REFERENCES
1. Cui, X.; Li, H.; Wang, Y.; et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902-10.
2. Daiyan, R.; Saputera, W. H.; Masood, H.; Leverett, J.; Lu, X.; Amal, R. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel. Adv. Energy. Mater. 2020, 10, 1902106.
3. He, H.; Perman, J. A.; Zhu, G.; Ma, S. Metal-organic frameworks for CO2 chemical transformations. Small 2016, 12, 6309-24.
4. Wang, F.; Dreisinger, D.; Jarvis, M.; Hitchins, T.; Trytten, L. CO2 mineralization and concurrent utilization for nickel conversion from nickel silicates to nickel sulfides. Chem. Eng. J. 2021, 406, 126761.
5. Zhai, T.; Wang, C.; Gu, F.; Meng, Z.; Liu, W.; Wang, Y. Dopamine/polyethylenimine-modified silica for enzyme immobilization and strengthening of enzymatic CO2 conversion. ACS. Sustain. Chem. Eng. 2020, 8, 15250-7.
6. Ma, Y.; Yi, X.; Wang, S.; et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022, 13, 1400.
7. Sun, S.; Mao, Y.; Liu, F.; et al. Recent advances in nanoscale engineering of Pd-based electrocatalysts for selective CO2 electroreduction to formic acid/formate. Energy. Mater. 2024, 4, 400027.
8. Feng, D.; Li, Z.; Guo, H.; et al. Conjugated polyimides modified self-supported carbon electrodes for electrochemical conversion of CO2 to CO. Energy. Mater. 2024, 4, 400069.
9. Xu, D.; Li, K.; Jia, B.; et al. Electrocatalytic CO2 reduction towards industrial applications. Carbon. Energy. 2023, 5, e230.
10. Liu, A.; Gao, M.; Ren, X.; et al. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A. 2020, 8, 3541-62.
11. Zhou, L.; Lv, R. Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. J. Energy. Chem. 2022, 70, 310-31.
12. He, J.; Li, Y.; Huang, A.; Liu, Q.; Li, C. Electrolyzer and catalysts design from carbon dioxide to carbon monoxide electrochemical reduction. Electrochem. Energy. Rev. 2021, 4, 680-717.
13. Bushuyev, O. S.; De, L. P.; Dinh, C. T.; et al. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-32.
14. Fu, Y.; Xie, Q.; Wan, L.; Huang, Q.; Luo, J. Ethanol assisted cyclic voltammetry treatment of copper for electrochemical CO2 reduction to ethylene. Mater. Today. Energy. 2022, 29, 101105.
15. Zhang, Z.; Li, S.; Zhang, Z.; et al. A review on electrocatalytic CO2 conversion via C-C and C-N coupling. Carbon. Energy. 2024, 6, e513.
16. Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. ACC. Chem. Res. 2022, 55, 134-44.
17. Overa, S.; Ko, B. H.; Zhao, Y.; Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications. ACC. Chem. Res. 2022, 55, 638-48.
18. Liu, C.; Mei, X.; Han, C.; Gong, X.; Song, P.; Xu, W. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction. Chin. J. Catal. 2022, 43, 1618-33.
19. Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, e2005254.
20. Xue, Y.; Guo, Y.; Cui, H.; Zhou, Z. Catalyst design for electrochemical reduction of CO2 to multicarbon products. Small. Methods. 2021, 5, e2100736.
21. Liang, F.; Zhang, K.; Zhang, L.; Zhang, Y.; Lei, Y.; Sun, X. Recent development of electrocatalytic CO2 reduction application to energy conversion. Small 2021, 17, e2100323.
22. Dai, S.; Huang, T. H.; Liu, W. I.; et al. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency. Nano. Lett. 2021, 21, 9293-300.
23. Liu, L.; Akhoundzadeh, H.; Li, M.; Huang, H. Alloy catalysts for electrocatalytic CO2 reduction. Small. Methods. 2023, 7, e2300482.
24. Bui, T. S.; Lovell, E. C.; Daiyan, R.; Amal, R. Defective metal oxides: lessons from CO2RR and applications in NOxRR. Adv. Mater. 2023, 35, e2205814.
25. Zhao, X.; Feng, Q.; Liu, M.; et al. Built-in electric field promotes interfacial adsorption and activation of CO2 for C1 products over a wide potential window. ACS. Nano. 2024, 18, 9678-87.
26. Mukherjee, A.; Abdinejad, M.; Mahapatra, S. S.; Ruidas, B. C. Metal sulfide-based nanomaterials for electrochemical CO2 reduction. J. Mater. Chem. A. 2023, 11, 9300-32.
27. Cui, H.; Guo, Y.; Guo, L.; Wang, L.; Zhou, Z.; Peng, Z. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A. 2018, 6, 18782-93.
28. Yang, D. H.; Tao, Y.; Ding, X.; Han, B. H. Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 2022, 51, 761-91.
29. Hong, J.; Park, K. T.; Kim, Y. E.; et al. Ag/C composite catalysts derived from spray pyrolysis for efficient electrochemical CO2 reduction. Chem. Eng. J. 2022, 431, 133384.
30. Sun, K.; Qian, Y.; Jiang, H. L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. 2023, 62, e202217565.
31. Yang, R.; Fu, Y.; Wang, H.; et al. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. Chem. Eng. J. 2022, 450, 138040.
32. Liu, G.; Liu, S.; Lai, C.; et al. Strategies for enhancing the photocatalytic and electrocatalytic efficiency of covalent triazine frameworks for CO2 reduction. Small 2024, 20, e2307853.
33. Mushtaq, N.; Ahmad, A.; Wang, X.; Khan, U.; Gao, J. MOFs/COFs hybrids as next-generation materials for electrocatalytic CO2 reduction reaction. Chem. Eng. J. 2024, 486, 150098.
34. Pan, Y.; Abazari, R.; Tahir, B.; et al. Iron-based metal-organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coordin. Chem. Rev. 2024, 499, 215538.
35. Wang, J.; Tan, H. Y.; Zhu, Y.; Chu, H.; Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 17254-67.
36. Li, M.; Garg, S.; Chang, X.; et al. Toward excellence of transition metal-based catalysts for CO2 electrochemical reduction: an overview of strategies and rationales. Small. Methods. 2020, 4, 2000033.
37. Al-rowaili, F. N.; Jamal, A.; Ba, S. M. S.; Rana, A. A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal-organic framework (MOF) and non-MOF catalysts: challenges and future prospects. ACS. Sustain. Chem. Eng. 2018, 6, 15895-914.
38. Wang, D.; Mao, J.; Zhang, C.; et al. Modulating microenvironments to enhance CO2 electroreduction performance. eScience 2023, 3, 100119.
39. Wu, Y.; Cao, S.; Hou, J.; et al. Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction. Adv. Energy. Mater. 2020, 10, 2000588.
40. Xiao, H.; Cheng, T.; Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 2017, 139, 130-6.
41. Zhi, X.; Vasileff, A.; Zheng, Y.; Jiao, Y.; Qiao, S. Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. Energy. Environ. Sci. 2021, 14, 3912-30.
42. Peng, H.; Tang, M. T.; Liu, X.; Schlexer, L. P.; Bajdich, M.; Abild-pedersen, F. The role of atomic carbon in directing electrochemical CO2 reduction to multicarbon products. Energy. Environ. Sci. 2021, 14, 473-82.
43. Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS. Catal. 2018, 8, 1490-9.
44. Zang, Y.; Wei, P.; Li, H.; Gao, D.; Wang, G. Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals. Electrochem. Energy. Rev. 2022, 5, 140.
45. Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 2021, 60, 20627-48.
46. Verma, S.; Kim, B.; Jhong, H. R.; Ma, S.; Kenis, P. J. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972-9.
47. Lai, W.; Qiao, Y.; Zhang, J.; Lin, Z.; Huang, H. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy. Environ. Sci. 2022, 15, 3603-29.
48. Ma, W.; He, X.; Wang, W.; Xie, S.; Zhang, Q.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897-914.
49. Yang, C.; Li, S.; Zhang, Z.; et al. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, e2001847.
50. Zhou, Y.; Abazari, R.; Chen, J.; et al. Bimetallic metal-organic frameworks and MOF-derived composites: recent progress on electro- and photoelectrocatalytic applications. Coordin. Chem. Rev. 2022, 451, 214264.
51. Chang, F.; Xiao, M.; Miao, R.; et al. Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem. Energy. Rev. 2022, 5, 139.
52. Zhong, H.; Qiu, Y.; Zhang, T.; Li, X.; Zhang, H.; Chen, X. Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A. 2016, 4, 13746-53.
53. Cao, L.; Huang, J.; Wu, X.; et al. Active-site stabilized Bi metal-organic framework-based catalyst for highly active and selective electroreduction of CO2 to formate over a wide potential window. Nanoscale 2023, 15, 19522-32.
54. Zhang, X.; Zhang, Y.; Li, Q.; et al. Highly efficient and durable aqueous electrocatalytic reduction of CO2 to HCOOH with a novel bismuth-MOF: experimental and DFT studies. J. Mater. Chem. A. 2020, 8, 9776-87.
55. Ying, Y.; Khezri, B.; Kosina, J.; Pumera, M. Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: morphology engineering. ChemSusChem 2021, 14, 3402-12.
56. Jiang, Z.; Zhang, M.; Chen, X.; et al. A bismuth-based zeolitic organic framework with coordination-linked metal cages for efficient electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Ed. 2023, 62, e202311223.
57. Chen, S.; Chung, L. H.; Chen, S.; et al. Efficient lead removal by assembly of bio-derived ellagate framework, which enables electrocatalytic reduction of CO2 to formate. Small 2024, 20, e2400978.
58. Wang, Y. R.; Huang, Q.; He, C. T.; et al. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.
59. Zhu, H. L.; Huang, J. R.; Zhang, X. W.; et al. Highly efficient electroconversion of CO2 into CH4 by a metal-organic framework with trigonal pyramidal Cu(I)N3 active sites. ACS. Catal. 2021, 11, 11786-92.
60. Liu, Y.; Zhu, H.; Zhao, Z.; Huang, N.; Liao, P.; Chen, X. Insight into the effect of the d-orbital energy of copper ions in metal-organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS. Catal. 2022, 12, 2749-55.
61. Deng, J.; Qiu, L.; Xin, M.; et al. Boosting Electrochemical CO2 reduction on copper-based metal-organic frameworks via valence and coordination environment modulation. Small 2024, 20, e2311060.
62. Lu, P.; Lv, J.; Chen, Y.; et al. Steering the selectivity of carbon dioxide electroreduction from single-carbon to multicarbon products on metal-organic frameworks via facet engineering. Nano. Lett. 2024, 24, 1553-62.
63. Wang, J.; Liu, J.; Song, Y.; et al. Simultaneous defect and size control of metal-organic framework nanostructures for highly efficient carbon dioxide electroreduction to multicarbon products. ACS. Mater. Lett. 2023, 5, 2121-30.
64. Cao, L.; Wu, X.; Liu, Y.; et al. Electrochemical conversion of CO2 to syngas with a stable H2/CO ratio in a wide potential range over ligand-engineered metal-organic frameworks. J. Mater. Chem. A. 2022, 10, 9954-9.
65. Shao, P.; Yi, L.; Chen, S.; Zhou, T.; Zhang, J. Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers. J. Energy. Chem. 2020, 40, 156-70.
66. Al-attas, T. A.; Marei, N. N.; Yong, X.; et al. Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide. ACS. Catal. 2021, 11, 7350-7.
67. Zhao, S.; Wang, Y.; Dong, J.; et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy. 2016, 1, 16184.
68. Zhu, D.; Guo, C.; Liu, J.; Wang, L.; Du, Y.; Qiao, S. Z. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 2017, 53, 10906-9.
69. Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.
70. Yuan, M.; Wang, R.; Fu, W.; et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 11403-13.
71. Hu, Q.; Huang, X.; Wang, Z.; et al. Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic framework nanosheets to enable high-output oxygen evolution. J. Mater. Chem. A. 2020, 8, 2140-6.
72. Zhou, W.; Huang, D. D.; Wu, Y. P.; et al. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4227-31.
73. Majumder, M.; Santosh, M. S.; Viswanatha, R.; Thakur, A. K.; Dubal, D. P.; Jayaramulu, K. Two-dimensional conducting metal-organic frameworks enabled energy storage devices. Energy. Storage. Mater. 2021, 37, 396-416.
74. Zhao, Y.; Hou, N.; Wang, Y.; et al. All-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system. J. Mater. Chem. A. 2022, 10, 1248-56.
75. Ball, M.; Zhang, B.; Zhong, Y.; et al. Conjugated macrocycles in organic electronics. ACC. Chem. Res. 2019, 52, 1068-78.
76. Lv, J.; Li, W.; Li, J.; et al. A triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane. Angew. Chem. Int. Ed. 2023, 62, e202217958.
77. Singh, A. K.; Gu, L.; Dutta, C. A.; Indra, A. Exploring ligand-controlled C2 product selectivity in carbon dioxide reduction with copper metal-organic framework nanosheets. Inorg. Chem. 2023, 62, 8803-11.
78. Zhao, J.; Lyu, H.; Wang, Z.; et al. Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: progress in regulation strategies and applications. Sep. Purif. Technol. 2023, 312, 123404.
79. Downes, C. A.; Marinescu, S. C. Electrocatalytic metal-organic frameworks for energy applications. ChemSusChem 2017, 10, 4374-92.
80. Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 2017, 56, 6468-72.
81. Han, J.; An, P.; Liu, S.; et al. Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem. Int. Ed. 2019, 58, 12711-6.
82. Bohan, A.; Jin, X.; Wang, M.; Ma, X.; Wang, Y.; Zhang, L. Uncoordinated amino groups of MIL-101 anchoring cobalt porphyrins for highly selective CO2 electroreduction. J. Colloid. Interface. Sci. 2024, 654, 830-9.
83. Zhang, W.; Liu, S.; Yang, Y.; et al. Exclusive Co-N4 sites confined in two-dimensional metal-organic layers enabling highly selective CO2 electroreduction at industrial-level current. Angew. Chem. Int. Ed. 2023, 62, e202219241.
84. Ifraemov, R.; Mukhopadhyay, S.; Hod, I. Photo-assisted electrochemical CO2 reduction to CH4 using a co-porphyrin-based metal-organic framework. Solar. RRL. 2023, 7, 2201068.
85. Wu, J. X.; Hou, S. Z.; Zhang, X. D.; et al. Cathodized copper porphyrin metal-organic framework nanosheets for selective formate and acetate production from CO2 electroreduction. Chem. Sci. 2019, 10, 2199-205.
86. Lee, J.; Choi, H.; Mun, J.; et al. Nanozyme based on porphyrinic metal-organic framework for electrocatalytic CO2 reduction. Small. Struct. 2023, 4, 2370002.
87. Wu, J. X.; Yuan, W. W.; Xu, M.; Gu, Z. Y. Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2. Chem. Commun. 2019, 55, 11634-7.
88. Zhang, M. D.; Huang, J. R.; Shi, W.; Liao, P. Q.; Chen, X. M. Synergistic effect in a metal-organic framework boosting the electrochemical CO2 overall splitting. J. Am. Chem. Soc. 2023, 145, 2439-47.
89. Zhong, H.; Ghorbani-Asl, M.; Ly, K. H.; et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 2020, 11, 1409.
90. Yi, J. D.; Si, D. H.; Xie, R.; et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 2021, 60, 17108-14.
91. Zhang, M.; Si, D.; Yi, J.; Yin, Q.; Huang, Y.; Cao, R. Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Sci. China. Chem. 2021, 64, 1332-9.
92. Kim, Y.; Park, S.; Shin, S.; et al. Time-resolved observation of C-C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy. Environ. Sci. 2020, 13, 4301-11.
93. Qiu, X. F.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242-6.
94. Liu, J.; Yang, D.; Zhou, Y.; et al. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 14473-9.
95. Liu, Y.; Li, S.; Dai, L.; et al. The synthesis of hexaazatrinaphthylene-based 2D conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angew. Chem. Int. Ed. 2021, 60, 16409-15.
96. Chen, S.; Li, W. H.; Jiang, W.; et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. Int. Ed. 2022, 61, e202114450.
97. Zhang, Y.; Dong, L. Z.; Li, S.; et al. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390.
98. Zheng, W.; Yang, X.; Li, Z.; et al. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew. Chem. Int. Ed. 2023, 62, e202307283.
99. Mo, Q.; Li, S.; Chen, C.; Song, H.; Gao, Q.; Zhang, L. Engineering dual sites into the confined nanospace of the porphyrinic metal-organic framework for tandem transformation of CO2 to ethylene. ACS. Sustain. Chem. Eng. 2024, 12, 6093-101.
100. Du, H.; Fu, J.; Liu, L.; et al. Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products. Mater. Today. 2022, 59, 182-99.
101. Cho, J. H.; Lee, C.; Hong, S. H.; et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction. Adv. Mater. 2023, 35, e2208224.
102. Chen, T.; Huang, B.; Day, S.; et al. Differential adsorption of l- and d-lysine on achiral MFI zeolites as determined by synchrotron
103. Xue, Q.; Xie, Y.; Wu, S.; et al. A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance. Nanoscale 2020, 12, 23206-12.
104. Liu, K.; Bigdeli, F.; Panjehpour, A.; et al. Metal organic framework composites for reduction of CO2. Coordin. Chem. Rev. 2023, 493, 215257.
105. Zhao, Y.; Zheng, L.; Jiang, D.; et al. Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions. Small 2021, 17, e2006590.
106. Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 2016, 55, 15282-6.
107. Nam, D. H.; De, L. P.; Rosas-Hernández, A.; et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266-76.
108. Mukhopadhyay, S.; Shimoni, R.; Liberman, I.; Ifraemov, R.; Rozenberg, I.; Hod, I. Assembly of a metal-organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular-level control over heterogeneous CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 13423-9.
109. Mukhopadhyay, S.; Naeem, M. S.; Shiva, S. G.; et al. Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction. Nat. Commun. 2024, 15, 3397.
110. Guntern, Y. T.; Pankhurst, J. R.; Vávra, J.; et al. Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem. Int. Ed. 2019, 58, 12632-9.
111. Kung, C.; Audu, C. O.; Peters, A. W.; Noh, H.; Farha, O. K.; Hupp, J. T. Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction. ACS. Energy. Lett. 2017, 2, 2394-401.
112. Sun, B.; Hu, H.; Liu, H.; et al. Highly-exposed copper and ZIF-8 interface enables synthesis of hydrocarbons by electrocatalytic reduction of CO2. J. Colloid. Interface. Sci. 2024, 661, 831-9.
113. Takaoka, Y.; Song, J. T.; Takagaki, A.; Watanabe, M.; Ishihara, T. Bi/UiO-66-derived electrocatalysts for high CO2-to-formate conversion rate. Appl. Catal. B. Environ. 2023, 326, 122400.
114. Lu, X.; Zhu, C.; Wu, Z.; Xuan, J.; Francisco, J. S.; Wang, H. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 2020, 142, 15438-44.
115. Aparna, R. K.; Surendran, V.; Roy, D.; Pathak, B.; Shaijumon, M. M.; Mandal, S. Silver nanoparticle-decorated defective Zr-based metal-organic frameworks for efficient electrocatalytic carbon dioxide reduction with ultrahigh mass activity. ACS. Appl. Energy. Mater. 2023, 6, 4072-8.
116. Cheng, Q.; Huang, M.; Xiao, L.; et al. Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS. Catal. 2023, 13, 4021-9.
117. Pourebrahimi, S.; Pirooz, M.; Ahmadi, S.; Kazemeini, M.; Vafajoo, L. Nanoengineering of metal-based electrocatalysts for carbon dioxide (CO2) reduction: a critical review. Mater. Today. Phys. 2023, 38, 101250.
118. Liu, H.; Wang, H.; Song, Q.; et al. Assembling metal organic layer composites for high-performance electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 2022, 61, e202117058.
119. Wang, L.; Li, X.; Hao, L.; Hong, S.; Robertson, A. W.; Sun, Z. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene. Chin. J. Catal. 2022, 43, 1049-57.
120. Tan, X.; Yu, C.; Zhao, C.; et al. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2. ACS. Appl. Mater. Interfaces. 2019, 11, 9904-10.
121. Sun, M.; Xu, X.; Min, S.; He, J.; Li, K.; Kang, L. Controllable preparation of Cu2O/Cu-CuTCPP MOF heterojunction for enhanced electrocatalytic CO2 reduction to C2H4. Appl. Surf. Sci. 2024, 659, 159937.
122. Wang, P.; Yang, H.; Tang, C.; et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling. Nat. Commun. 2022, 13, 3754.
123. Zhang, Y.; Chen, Y.; Wang, X.; Feng, Y.; Zhang, H.; Zhang, G. Self-polarization triggered multiple polar units toward electrochemical reduction of CO2 to ethanol with high selectivity. Angew. Chem. Int. Ed. 2023, 62, e202302241.
124. Xin, Z.; Wang, Y.; Chen, Y.; Li, W.; Dong, L.; Lan, Y. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano. Energy. 2020, 67, 104233.
125. Xin, Z.; Liu, J.; Wang, X.; et al. Implanting polypyrrole in metal-porphyrin MOFs: enhanced electrocatalytic performance for CO2RR. ACS. Appl. Mater. Interfaces. 2021, 13, 54959-66.
126. Dou, S.; Song, J.; Xi, S.; et al. Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping. Angew. Chem. Int. Ed. 2019, 58, 4041-5.
127. Zheng, Y.; Li, S.; Huang, N.; Li, X.; Xu, Q. Recent advances in metal-organic framework-derived materials for electrocatalytic and photocatalytic CO2 reduction. Coordin. Chem. Rev. 2024, 510, 215858.
128. Zheng, Y.; Cheng, P.; Xu, J.; et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism. Nanoscale 2019, 11, 4911-7.
129. Payra, S.; Ray, S.; Sharma, R.; Tarafder, K.; Mohanty, P.; Roy, S. Photo- and electrocatalytic reduction of CO2 over metal-organic frameworks and their derived oxides: a correlation of the reaction mechanism with the electronic structure. Inorg. Chem. 2022, 61, 2476-89.
130. Wu, J. X.; Zhu, X. R.; Liang, T.; et al. Sn(101) derived from metal-organic frameworks for efficient electrocatalytic reduction of CO2. Inorg. Chem. 2021, 60, 9653-9.
131. Zhang, W.; Li, H.; Feng, D.; et al. MOF-derived 1D/3D N-doped porous carbon for spatially confined electrochemical CO2 reduction to adjustable syngas. Carbon. Energy. 2024, 6, e461.
132. Guo, Y.; Yang, H.; Zhou, X.; et al. Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. J. Mater. Chem. A. 2017, 5, 24867-73.
133. Ren, Q.; Wang, H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 2018, 5, 1700515.
134. Kuang, M.; Guan, A.; Gu, Z.; Han, P.; Qian, L.; Zheng, G. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano. Res. 2019, 12, 2324-9.
135. Ye, L.; Ying, Y.; Sun, D.; et al. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 3244-51.
136. Wang, R.; Sun, X.; Ould-Chikh, S.; et al. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction. ACS. Appl. Mater. Interfaces. 2018, 10, 14751-8.
137. Frank, S.; Svensson, G. E.; Bøjesen, E. D.; et al. Exploring the influence of atomic level structure, porosity, and stability of bismuth(iii) coordination polymers on electrocatalytic CO2 reduction. J. Mater. Chem. A. 2021, 9, 26298-310.
138. Liu, J.; Peng, L.; Zhou, Y.; et al. Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction. ACS. Sustain. Chem. Eng. 2019, 7, 15739-46.
139. Guo, W.; Sun, X.; Chen, C.; et al. Metal-organic framework-derived indium-copper bimetallic oxide catalysts for selective aqueous electroreduction of CO2. Green. Chem. 2019, 21, 503-8.
140. Payra, S.; Roy, S. From Trash to treasure: probing cycloaddition and photocatalytic reduction of CO2 over cerium-based metal-organic frameworks. J. Phys. Chem. C. 2021, 125, 8497-507.
141. Smolders, S.; Jacobsen, J.; Stock, N.; De, V. D. Selective catalytic reduction of NO by cerium-based metal-organic frameworks. Catal. Sci. Technol. 2020, 10, 337-41.
142. Han, Y.; Liu, M.; Li, K.; et al. In situ synthesis of titanium doped hybrid metal-organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorg. Chem. Front. 2017, 4, 1870-80.
143. Yang, D.; Zhu, Q.; Sun, X.; et al. Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO2 in aqueous electrolytes. Green. Chem. 2018, 20, 3705-10.
144. Kempasiddaiah, M.; Samanta, R.; Panigrahy, S.; Trivedi, R. K.; Chakraborty, B.; Barman, S. Electrochemical reconstruction of a 1D Cu(PyDC)(H2O) MOF into in situ formed Cu-Cu2O heterostructures on carbon cloth as an efficient electrocatalyst for CO2 conversion. Nanoscale 2024, 16, 10458-73.
145. Zhang, Y.; Sun, T.; Zhang, P.; Liu, K.; Li, F.; Xu, L. Synthesizing MOF-derived NiNC catalyst via surfactant modified strategy for efficient electrocatalytic CO2 to CO. J. Colloid. Interface. Sci. 2023, 631, 96-101.
146. Zhang, X.; Fu, J.; Liu, Y.; Zhou, X.; Qiao, J. Bismuth anchored on MWCNTs with controlled ultrafine nanosize enables high-efficient electrochemical reduction of carbon dioxide to formate fuel. ACS. Sustain. Chem. Eng. 2020, 8, 4871-6.
147. Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy. Mater. 2017, 7, 1700759.
148. Gong, Q.; Ding, P.; Xu, M.; et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.
149. Jia, M.; Choi, C.; Wu, T. S.; et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem. Sci. 2018, 9, 8775-80.
150. Huang, H.; Shen, K.; Chen, F.; Li, Y. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS. Catal. 2020, 10, 6579-86.
151. Wang, H.; Wu, X.; Liu, G.; Wu, S.; Xu, R. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano. Res. 2023, 16, 4546-53.
152. Chang, B.; Min, Z.; Liu, N.; et al. Electrocatalytic CO2 reduction to syngas. Green. Energy. Environ. 2024, 9, 1085-100.
153. Ringe, S. The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts. Nat. Commun. 2023, 14, 2598.
154. Song, C.; Wang, X.; Song, G.; et al. Electrocatalytic reduction of CO2 by Co-Cu metastable alloy nanoparticles derived from MOFs. J. Alloys. Compd. 2024, 994, 174693.
155. Fan, J.; Zhao, X.; Mao, X.; et al. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, e2100910.
156. Liu, S. Q.; Shahini, E.; Gao, M. R.; et al. Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window. ACS. Nano. 2021, 15, 17757-68.
157. Ma, S.; Wu, K.; Fan, S.; et al. Electrocatalytic CO2 reduction enhanced by Sb doping in MOF-derived carbon-supported Bi-based materials. Sep. Purif. Technol. 2024, 339, 126520.
158. Wang, Y.; Sui, P.; Xu, C.; et al. Optimizing Bi active sites by Ce doping for boosting formate production in a wide potential window. Inorg. Chem. Front. 2024, 11, 926-35.
159. Zhao, K.; Liu, Y.; Quan, X.; Chen, S.; Yu, H. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS. Appl. Mater. Interfaces. 2017, 9, 5302-11.
160. Yang, H.; Yu, X.; Shao, J.; et al. In situ encapsulated and well dispersed Co3O4 nanoparticles as efficient and stable electrocatalysts for high-performance CO2 reduction. J. Mater. Chem. A. 2020, 8, 15675-80.
161. Deng, P.; Yang, F.; Wang, Z.; et al. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 2020, 59, 10807-13.
162. Chen, Y.; Zhang, J.; Yang, L.; Wang, X.; Wu, Q.; Hu, Z. Recent advances in non-precious metal-nitrogen-carbon single-site catalysts for CO2 electroreduction reaction to CO. Electrochem. Energy. Rev. 2022, 5, 156.
163. Ma, S.; Han, W.; Han, W.; Dong, F.; Tang, Z. Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review. J. Mater. Chem. A. 2023, 11, 3315-63.
164. Wang, S.; Yuan, X.; Zhou, S.; et al. Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization. Energy. Mater. 2024, 4, 400032.
165. Chen, X.; Ma, D.; Chen, B.; et al. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B. Environ. 2020, 267, 118720.
166. Ye, Y.; Cai, F.; Li, H.; et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano. Energy. 2017, 38, 281-9.
167. Qin, X.; Zhu, S.; Xiao, F.; Zhang, L.; Shao, M. Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction. ACS. Energy. Lett. 2019, 4, 1778-83.
168. Yan, C.; Li, H.; Ye, Y.; et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy. Environ. Sci. 2018, 11, 1204-10.
169. Chung, H. T.; Cullen, D. A.; Higgins, D.; et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479-84.
170. Liu, K.; Wu, G.; Wang, G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J. Phys. Chem. C. 2017, 121, 11319-24.
171. Pan, F.; Zhang, H.; Liu, Z.; et al. Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. J. Mater. Chem. A. 2019, 7, 26231-7.
172. Jiao, L.; Yang, W.; Wan, G.; et al. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 2020, 59, 20589-95.
173. Li, J.; Pršlja, P.; Shinagawa, T.; et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS. Catal. 2019, 9, 10426-39.
174. Lee, S. M.; Cheon, W. S.; Lee, M. G.; Jang, H. W. Coordination environment in single-atom catalysts for high-performance electrocatalytic CO2 reduction. Small. Struct. 2023, 4, 2200236.
175. Wang, H.; Tong, Y.; Chen, P. Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO. Nano. Energy. 2023, 118, 108967.
176. Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 7607-11.
177. Gong, Y. N.; Jiao, L.; Qian, Y.; et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 2705-9.
178. Wang, X.; Chen, Z.; Zhao, X.; et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 2018, 57, 1944-8.
179. Jia, C.; Tan, X.; Zhao, Y.; et al. Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties. Angew. Chem. Int. Ed. 2021, 60, 23342-8.
180. Zhao, D.; Yu, K.; Song, P.; et al. Atomic-level engineering Fe1N2O2 interfacial structure derived from oxygen-abundant metal-organic frameworks to promote electrochemical CO2 reduction. Energy. Environ. Sci. 2022, 15, 3795-804.
181. Wei, S.; Jiang, X.; He, C.; et al. Construction of single-atom copper sites with low coordination number for efficient CO2 electroreduction to CH4. J. Mater. Chem. A. 2022, 10, 6187-92.
182. Guan, A.; Chen, Z.; Quan, Y.; et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS. Energy. Lett. 2020, 5, 1044-53.
183. Jiao, L.; Zhu, J.; Zhang, Y.; et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417-24.
184. Zhong, D. C.; Gong, Y. N.; Zhang, C.; Lu, T. B. Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 2023, 52, 3170-214.
185. Pei, J.; Zhang, G.; Liao, J.; et al. Low-coordinated Co-Mn diatomic sites derived from metal-organic framework nanorods promote electrocatalytic CO2 reduction. J. Mater. Chem. A. 2024, 12, 13694-702.
186. Jin, Z.; Yang, M.; Dong, Y.; et al. Atomic dispersed hetero-pairs for enhanced electrocatalytic CO2 reduction. Nanomicro. Lett. 2023, 16, 4.
187. Wang, Y.; Sun, R.; Chen, Y.; et al. Highly crystalline covalent triazine frameworks modified separator for lithium metal batteries. Energy. Mater. 2024, 4, 400056.
188. Chen, X.; Geng, K.; Liu, R.; et al. Covalent organic frameworks: chemical approaches to designer structures and built-in functions. Angew. Chem. Int. Ed. 2020, 59, 5050-91.
189. Ali, S. A.; Sadiq, I.; Ahmad, T. Superlative porous organic polymers for photochemical and electrochemical CO2 reduction applications: from synthesis to functionality. Langmuir 2024, 40, 10414-32.
190. Zhu, X.; Tian, C.; Wu, H.; et al. Pyrolyzed triazine-based nanoporous frameworks enable electrochemical CO2 reduction in water. ACS. Appl. Mater. Interfaces. 2018, 10, 43588-94.
191. Li, X.; Zhao, X.; Liu, Y.; Hatton, T. A.; Liu, Y. Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nat. Energy. 2022, 7, 1065-75.
192. Xiao, Y.; Lu, J.; Chen, K.; Cao, Y.; Gong, C.; Ke, F. S. Linkage engineering in covalent organic frameworks for metal-free electrocatalytic C2H4 production from CO2. Angew. Chem. Int. Ed. 2024, 63, e202404738.
193. Liu, M.; Yang, S.; Yang, X.; et al. Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. Nat. Commun. 2023, 14, 3800.
194. Dubed, B. G. C.; Franco, F.; Liu, C.; et al. Toward the understanding of the structure-activity correlation in single-site Mn covalent organic frameworks for electrocatalytic CO2 reduction. ACS. Appl. Energy. Mater. 2024, 7, 1348-57.
195. Zhang, L.; Li, X. X.; Lang, Z. L.; et al. Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 2021, 143, 3808-16.
196. Sakamoto, N.; Nishimura, Y. F.; Nonaka, T.; et al. Self-assembled cuprous coordination polymer as a catalyst for CO2 electrochemical reduction into C2 products. ACS. Catal. 2020, 10, 10412-9.
197. Sakamoto, N.; Sekizawa, K.; Sato, S.; et al. Electrochemical CO2 reduction improved by tuning the Cu-Cu distance in halogen-bridged dinuclear cuprous coordination polymers. J. Catal. 2021, 404, 12-7.
198. Song, Y.; Zhang, J.; Zhu, Z.; et al. Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. Appl. Catal. B. Environ. 2021, 284, 119750.
199. Arisnabarreta, N.; Hao, Y.; Jin, E.; et al. Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO2 reduction. Adv. Energy. Mater. 2024, 14, 2304371.
200. Zhang, M.; Liao, J. P.; Li, R. H.; et al. Green synthesis of bifunctional phthalocyanine-porphyrin cofs in water for efficient electrocatalytic CO2 reduction coupled with methanol oxidation. Natl. Sci. Rev. 2023, 10, nwad226.
201. Wei, S.; Zou, H.; Rong, W.; Zhang, F.; Ji, Y.; Duan, L. Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. App. Catal. B. Environ. 2021, 284, 119739.
202. Xie, T.; Chen, S.; Yue, Y.; Sheng, T.; Huang, N.; Xiong, Y. Biomimetic phthalocyanine-based covalent organic frameworks with tunable pendant groups for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2024, 63, e202411188.
203. Kong, X.; Liu, B.; Tong, Z.; et al. Charge-switchable ligand ameliorated cobalt polyphthalocyanine polymers for high-current-density electrocatalytic CO2 reduction. SmartMat 2024, 5, e1262.
204. Lu, C.; Yang, J.; Wei, S.; et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 2019, 29, 1806884.
205. Wang, T.; Guo, L.; Pei, H.; et al. Electron-rich pincer ligand-coupled cobalt porphyrin polymer with single-atom sites for efficient (photo)electrocatalytic CO2 reduction at ultralow overpotential. Small 2021, 17, e2102957.
206. Johnson, E. M.; Haiges, R.; Marinescu, S. C. Covalent-organic frameworks composed of rhenium bipyridine and metal porphyrins: designing heterobimetallic frameworks with two distinct metal sites. ACS. Appl. Mater. Interfaces. 2018, 10, 37919-27.
207. Zhang, X.; Yuan, Y.; Li, H.; et al. Viologen linker as a strong electron-transfer mediator in the covalent organic framework to enhance electrocatalytic CO2 reduction. Mater. Chem. Front. 2023, 7, 2661-70.
208. Li, J.; Tan, Y.; Lin, J.; et al. Coupling electrocatalytic redox-active sites in a three-dimensional bimetalloporphyrin-based covalent organic framework for enhancing carbon dioxide reduction and oxygen evolution. J. Mater. Chem. A. 2024, 12, 9478-85.
209. Endo, K.; Raza, A.; Yao, L.; et al. Downsizing porphyrin covalent organic framework particles using protected precursors for electrocatalytic CO2 reduction. Adv. Mater. 2024, 36, e2313197.
210. Yue, Y.; Cai, P.; Xu, K.; et al. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts. J. Am. Chem. Soc. 2021, 143, 18052-60.
211. Qiu, X. F.; Huang, J. R.; Yu, C.; et al. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew. Chem. Int. Ed. 2022, 61, e202206470.
212. Zhang, M. D.; Huang, J. R.; Shi, W.; Liao, P. Q.; Chen, X. M. Self-accelerating effect in a covalent-organic framework with imidazole groups boosts electroreduction of CO2 to CO. Angew. Chem. Int. Ed. 2023, 62, e202308195.
213. Wu, Q. J.; Si, D. H.; Wu, Q.; Dong, Y. L.; Cao, R.; Huang, Y. B. Boosting electroreduction of CO2 over cationic covalent organic frameworks: hydrogen bonding effects of halogen ions. Angew. Chem. Int. Ed. 2023, 62, e202215687.
214. Liu, M.; Cui, C. X.; Yang, S.; et al. Elaborate modulating binding strength of intermediates via three-component covalent organic frameworks for CO2 reduction reaction. Angew. Chem. Int. Ed. 2024, 63, e202401750.
215. Wang, T.; Xu, L.; Chen, Z.; et al. Central site regulation of cobalt porphyrin conjugated polymer to give highly active and selective CO2 reduction to CO in aqueous solution. Appl. Catal. B. Environ. 2021, 291, 120128.
216. Lu, Y.; Zhang, J.; Wei, W.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS. Appl. Mater. Interfaces. 2020, 12, 37986-92.
217. Wang, Y.; Zhang, X.; Lei, H.; et al. Tuning electronic structures of covalent co porphyrin polymers for electrocatalytic CO2 reduction in aqueous solutions. CCS. Chem. 2022, 4, 2959-67.
218. Wang, R.; Wang, X.; Weng, W.; et al. Proton/electron donors enhancing electrocatalytic activity of supported conjugated microporous polymers for CO2 reduction. Angew. Chem. Int. Ed. 2022, 61, e202115503.
219. Wang, T.; Wang, J.; Lu, C.; et al. Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% co selectivity and industrially-relevant current density. Adv. Mater. 2023, 35, e2205553.
220. Ao, K.; Zhao, P.; Zhang, Q.; et al. Activating the Ni-contenting carbon nanotube by covalent triazine frameworks to form atomically dispersed Ni sites with curvature effect for electrocatalytic CO2 reduction. Small. Struct. 2024, 5, 2300500.
221. Trindell, J. A.; Clausmeyer, J.; Crooks, R. M. Size stability and H2/CO selectivity for Au nanoparticles during electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 16161-7.
222. Zhang, L.; Wei, Z.; Thanneeru, S.; et al. A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 15834-40.
223. Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646-59.
224. Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 14736-46.
225. Zheng, M.; Wang, P.; Zhi, X.; et al. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 2022, 144, 14936-44.
226. Liu, Z.; Lv, X.; Kong, S.; et al. Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 2023, 62, e202309319.
227. Zhu, Z.; Zhu, Y.; Ren, Z.; et al. Covalent organic framework ionomer steering the CO2 electroreduction pathway on Cu at industrial-grade current density. J. Am. Chem. Soc. 2024, 146, 1572-9.
228. Meng, D. L.; Zhang, M. D.; Si, D. H.; et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 2021, 60, 25485-92.
229. Zhou, L.; Tian, Q.; Shang, X.; et al. Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction. Green. Chem. 2024, 26, 1454-61.
230. Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2,2'-bipyridine-containing covalent organic framework bearing rhenium(i) tricarbonyl moieties for CO2 reduction. Dalton. Trans. 2018, 47, 17450-60.
231. Tang, J.; Zhu, C.; Jiang, T.; et al. Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions. J. Mater. Chem. A. 2020, 8, 18677-86.
232. Wu, Q. J.; Si, D. H.; Ye, S.; Dong, Y. L.; Cao, R.; Huang, Y. B. Photocoupled electroreduction of CO2 over photosensitizer-decorated covalent organic frameworks. J. Am. Chem. Soc. 2023, 145, 19856-65.
233. Yang, Y. L.; Wang, Y. R.; Dong, L. Z.; et al. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv. Mater. 2022, 34, e2206706.
234. Liu, G.; Li, X.; Liu, M.; et al. Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction. SusMat 2023, 3, 834-42.
235. Lin, L.; Li, H.; Wang, Y.; et al. Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts. Angew. Chem. Int. Ed. 2021, 133, 26786-90.