REFERENCES

1. Macfarlane, D. R.; Forsyth, M.; Howlett, P. C.; et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 20155.

2. Thomas, M. L.; Hatakeyama-Sato, K.; Nanbu, S.; Yoshizawa-Fujita, M. Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries. Energy. Adv. 2023, 2, 748-64.

3. Basile, A.; Hilder, M.; Makhlooghiazad, F.; et al. Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies. Adv. Energy. Mater. 2018, 8, 1703491.

4. Makhlooghiazad, F.; Gunzelmann, D.; Hilder, M.; et al. Mixed phase solid-state plastic crystal electrolytes based on a phosphonium cation for sodium devices. Adv. Energy. Mater. 2017, 7, 1601272.

5. Zhu, H.; Rana, U. A.; Ranganathan, V.; et al. Proton transport behaviour and molecular dynamics in the guanidinium triflate solid and its mixtures with triflic acid. J. Mater. Chem. A. 2014, 2, 681-91.

6. Zhu, H.; Macfarlane, D. R.; Pringle, J. M.; Forsyth, M. Organic ionic plastic crystals as solid-state electrolytes. Trends. Chem. 2019, 1, 126-40.

7. Sonigara, K. K.; Shao, Z.; Prasad, J.; et al. Organic ionic plastic crystals as hole transporting layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2001460.

8. Pringle, J. M. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 1339-51.

9. Matuszek, K.; Piper, S. L.; Brzęczek-Szafran, A.; et al. Unexpected energy applications of ionic liquids. Adv. Mater. 2024, 36, e2313023.

10. Pringle, J. M.; Howlett, P. C.; Macfarlane, D. R.; Forsyth, M. Organic ionic plastic crystals: recent advances. J. Mater. Chem. 2010, 20, 2056.

11. Jin, L.; Nairn, K. M.; Forsyth, C. M.; et al. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Am. Chem. Soc. 2012, 134, 9688-97.

12. Ueda, H.; Saito, N.; Nakanishi, A.; et al. Unveiling the dynamic change in the ionic conductivity of a solid-state binary mixture comprising an organic ionic plastic crystal and LiBF4. Mater. Today. Phys. 2024, 43, 101395.

13. Macfarlane, D. R.; Huang, J.; Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 1999, 402, 792-4.

14. Forsyth, M.; Chimdi, T.; Seeber, A.; Gunzelmann, D.; Howlett, P. C. Structure and dynamics in an organic ionic plastic crystal, N-ethyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl) amide, mixed with a sodium salt. J. Mater. Chem. A. 2014, 2, 3993-4003.

15. Huang, J. Solid state lithium ion conduction in pyrrolidinium imide-lithium imide salt mixtures. Solid. State. Ion. 2000, 136-7, 447-52.

16. Forsyth, M.; Huang, J.; Macfarlane, D. R. Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals. J. Mater. Chem. 2000, 10, 2259-65.

17. Macfarlane, D. R.; Forsyth, M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater. 2001, 13, 957-66.

18. Biernacka, K.; Al-Masri, D.; Yunis, R.; Zhu, H.; Hollenkamp, A. F.; Pringle, J. M. Development of new solid-state electrolytes based on a hexamethylguanidinium plastic crystal and lithium salts. Electrochim. Acta. 2020, 357, 136863.

19. Biernacka, K.; Makhlooghiazad, F.; Popov, I.; et al. Investigation of unusual conductivity behavior and ion dynamics in hexamethylguanidinium bis(fluorosulfonyl)imide-based electrolytes for sodium batteries. J. Phys. Chem. C. 2021, 125, 12518-30.

20. Biernacka, K.; Makhlooghiazad, F.; Popov, I.; et al. Exploration of phase diagram, structural and dynamic behavior of [HMG][FSI] mixtures with NaFSI across an extended composition range. Phys. Chem. Chem. Phys. 2022, 24, 16712-23.

21. Popov, I.; Zhu, H.; Khamzin, A.; et al. Collective ion dynamics in ionic plastic crystals: the origin of conductivity suppression. J. Phys. Chem. C. 2023, 127, 15918-27.

22. Popov, I.; Biernacka, K.; Zhu, H.; et al. Strongly correlated ion dynamics in plastic ionic crystals and polymerized ionic liquids. J. Phys. Chem. C. 2020, 124, 17889-96.

23. MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 4962-7.

24. Zhang, Z.; Wheatle, B. K.; Krajniak, J.; Keith, J. R.; Ganesan, V. Ion mobilities, transference numbers, and inverse haven ratios of polymeric ionic liquids. ACS. Macro. Lett. 2020, 9, 84-9.

25. Dyre, J. C.; Maass, P.; Roling, B.; Sidebottom, D. L. Fundamental questions relating to ion conduction in disordered solids. Rep. Prog. Phys. 2009, 72, 046501.

26. Gainaru, C.; Stacy, E. W.; Bocharova, V.; et al. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity. J. Phys. Chem. B. 2016, 120, 11074-83.

27. Maass, P.; Meyer, M.; Bunde, A. Nonstandard relaxation behavior in ionically conducting materials. Phys. Rev. B. Condens. Matter. 1995, 51, 8164-77.

28. Roling, B.; Martiny, C.; Brückner, S. Ion transport in glass: influence of glassy structure on spatial extent of nonrandom ion hopping. Phys. Rev. B. 2001, 63, 214203.

29. Romanenko, K.; Pringle, J. M.; O’Dell, L. A.; Forsyth, M. New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions. Phys. Chem. Chem. Phys. 2015, 17, 18991-9000.

30. Pas, S. J.; Huang, J.; Forsyth, M.; MacFarlane, D. R.; Hill, A. J. Defect-assisted conductivity in organic ionic plastic crystals. J. Chem. Phys. 2005, 122, 064704.

31. Chen, F.; Jin, L.; de, L. S. W.; Pringle, J. M.; Forsyth, M. Atomistic simulation of structure and dynamics of the plastic crystal diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Chem. Phys. 2013, 138, 244503.

32. Chen, F.; de, L. S. W.; Forsyth, M. Dynamic heterogeneity and ionic conduction in an organic ionic plastic crystal and the role of vacancies. J. Phys. Chem. Lett. 2013, 4, 4085-9.

33. Forsyth, M.; Chen, F.; O'dell, L.; Romanenko, K. New insights into ordering and dynamics in organic ionic plastic crystal electrolytes. Solid. State. Ion. 2016, 288, 160-6.

34. Ishai, P. B.; Talary, M. S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 2013, 24, 102001.

35. Dyre, J. C. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988, 64, 2456-68.

36. Schrøder, T. B.; Dyre, J. C. ac Hopping conduction at extreme disorder takes place on the percolating cluster. Phys. Rev. Lett. 2008, 101, 025901.

37. Madsen, I. C.; Scarlett, N. V. Y.; Webster, N. A. S. Quantitative phase analysis. In: Kolb, U.; Shankland, K.; Meshi, L.; Avilov, A.; David, W.; editors, Uniting electron crystallography and powder diffraction. Dordrecht: Springer; 2012, pp.207-18.

38. Bish, D. L.; Howard, S. A. Quantitative phase analysis using the rietveld method. J. Appl. Cryst. 1988, 21, 86-91.

39. Kashyap, H. K.; Annapureddy, H. V. R.; Raineri, F. O.; Margulis, C. J. How is charge transport different in ionic liquids and electrolyte solutions? J. Phys. Chem. B. 2011, 115, 13212-21.

40. Schoenert, H. J. Evaluation of velocity correlation coefficients from experimental transport data in electrolytic systems. J. Phys. Chem. 1984, 88, 3359-63.

41. Ahmed, M. D.; Zhu, Z.; Khamzin, A.; Paddison, S. J.; Sokolov, A. P.; Popov, I. Effect of ion mass on dynamic correlations in ionic liquids. J. Phys. Chem. B. 2023, 127, 10411-21.

42. Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient Spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B. 2001, 105, 4603-10.

43. Tokudaa, H.; Hayamizu, K.; Ishii, K.; Abu, B. H. S. M.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B. 2004, 108, 16593-600.

44. Tokudaa, H.; Hayamizu, K.; Ishii, K.; Abu, B. H. S. M.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B. 2005, 109, 6103-10.

45. Tokudaa, H.; Ishii, K.; Abu, B. H. S. M.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B. 2006, 110, 2833-9.

46. Tokudaa, H.; Tsuzuki, S.; Abu Bin Hasan Susan, M.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B. 2006, 110, 19593-600.

47. Sangoro, J. R.; Kremer, F. Charge transport and glassy dynamics in ionic liquids. ACC. Chem. Res. 2012, 45, 525-32.

48. Harris, K. R. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts. J. Phys. Chem. B. 2010, 114, 9572-7.

49. Harris, K. R. Can the transport properties of molten salts and ionic liquids be used to determine ion association? J. Phys. Chem. B. 2016, 120, 12135-47.

50. Harris, K. R.; Kanakubo, M. Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids. J. Chem. Eng. Data. 2016, 61, 2399-411.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/