REFERENCES
1. Xu, Y.; Du, Y.; Chen, H.; et al. Recent advances in rational design for high-performance potassium-ion batteries. Chem. Soc. Rev. 2024, 53, 7202-98.
2. Yu, L.; Shao, L.; Wang, S.; et al. A low-cost NiSe2 derived from waste nickel foam as a high-performance anode for sodium ion batteries. Mater. Today. Phys. 2022, 22, 100593.
3. Zhang, X.; Jia, C.; Zhang, J.; Zhang, L.; Liu, X. Smart aqueous zinc ion battery: operation principles and design strategy. Adv. Sci. 2024, 11, e2305201.
4. Yang, A.; Yang, C.; Xie, K.; et al. Benchmarking the safety performance of organic electrolytes for rechargeable lithium batteries: a thermochemical perspective. ACS. Energy. Lett. 2023, 8, 836-43.
5. Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J. Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy. Mater. 2021, 11, 2000962.
6. Yuan, X.; Wu, X.; Zeng, X.; et al. A fully aqueous hybrid electrolyte rechargeable battery with high voltage and high energy density. Adv. Energy. Mater. 2020, 10, 2001583.
7. Li, Y.; Ba, H.; Wang, Z.; et al. Electrolyte pH and operating potential: critical factors regulating the anodic oxidation and zinc storage mechanisms in aqueous zinc ion battery. Mater. Today. Energy. 2024, 39, 101460.
8. Xiao, W.; Yang, S.; Jiang, R.; et al. V4C3 MXene-derived Zn0.99V5O12·nH2O nanoribbons as advanced cathodes for ultra-long life aqueous zinc-ion batteries. J. Mater. Chem. A. 2024, 12, 5530-9.
9. Huang, Q.; Shao, L.; Shi, X.; et al. Na3V2O2(PO4)2F nanoparticles@reduced graphene oxide: a high-voltage polyanionic cathode with enhanced reaction kinetics for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 468, 143738.
10. Yuan, L.; Hao, J.; Johannessen, B.; et al. Hybrid working mechanism enables highly reversible Zn electrodes. eScience 2023, 3, 100096.
11. Wang, Y.; Ren, T.; Wang, Z.; et al. Enabling and boosting preferential epitaxial zinc growth via multi-interface regulation for stable and dendrite-free zinc metal batteries. Adv. Energy. Mater. 2024, 14, 2400613.
12. Miao, L.; Guo, Z.; Jiao, L. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy. Mater. 2023, 3, 300014.
13. Xu, Y.; Wang, C.; Shi, Y.; Miao, G.; Fu, J.; Huang, Y. A self-preserving pitted texture enables reversible topographic evolution and cycling on Zn metal anodes. J. Mater. Chem. A. 2021, 9, 25495-501.
14. Fan, W.; Li, P.; Shi, J.; et al. Atomic zincophilic sites regulating microspace electric fields for dendrite-free zinc anode. Adv. Mater. 2024, 36, e2307219.
15. Li, Y.; Wu, P.; Zhong, W.; et al. A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy. Environ. Sci. 2021, 14, 5563-71.
16. Zhou, M.; Sun, G.; Zang, S. Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. J. Energy. Chem. 2022, 69, 76-83.
17. Li, Y.; Li, L.; Zhao, Y.; et al. Homogenizing Zn deposition in hierarchical nanoporous Cu for a high-current, high areal-capacity Zn flow battery. Small 2023, 19, e2303005.
18. Yu, J.; Yu, W.; Zhang, Z.; Tan, P. Reunderstanding the uneven deposition in aqueous zinc-based batteries. Chem. Eng. J. 2024, 481, 148556.
19. Zhao, L.; Gao, X.; Gu, Q.; et al. Realizing a dendrite-free metallic-potassium anode using reactive prewetting chemistry. eScience 2024, 4, 100201.
20. Wang, J.; Ma, Q.; Sun, S.; et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth. eScience 2022, 2, 655-65.
21. Gonzalez, M. S.; Yan, Q.; Holoubek, J.; et al. Draining over blocking: nano-composite janus separators for mitigating internal shorting of lithium batteries. Adv. Mater. 2020, 32, e1906836.
22. Zhao, H.; Wan, M.; Zhu, X.; et al. Exploring the disparities in capacity and cycling stability of NH4V4O10 cathodes in ZnSO4 and Zn(OTf)2 electrolytes. ACS. Appl. Nano. Mater. 2024, 7, 23712-21.
23. Cao, J.; Zhang, D.; Zhang, X.; Zeng, Z.; Qin, J.; Huang, Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy. Environ. Sci. 2022, 15, 499-528.
24. Wang, H.; Zhou, A.; Hu, X.; et al. Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS. Nano. 2023, 17, 11946-56.
25. Yang, J.; Zhang, Y.; Li, Z.; et al. Three birds with one stone: Tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv. Funct. Mater. 2022, 32, 2209642.
26. Zhang, Y.; Bi, S.; Niu, Z.; Zhou, W.; Xie, S. Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy. Mater. 2022, 2, 200012.
27. Zhang, Y.; Shi, Y.; Hu, X.; et al. A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy. Mater. 2020, 10, 1903325.
28. Hu, Q.; Hu, J.; Li, Y.; et al. Insights into Zn anode surface chemistry for dendrite-free Zn ion batteries. J. Mater. Chem. A. 2022, 10, 11288-97.
29. Fang, T.; Wu, M.; Lu, F.; Zhou, Z.; Fu, Y.; Shi, Z. Dendrite-free Zn anodes enabled by interface engineering for non-alkaline Zn-air and Zn-ion batteries. Energy. Mater. 2024, 4, 400039.
30. Ying, H.; Huang, P.; Zhang, Z.; et al. Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro. Lett. 2022, 14, 180.
31. Guo, X.; Lu, J.; Wang, M.; et al. Solid-electrolyte interphase governs zinc ion transfer kinetics in high-rate and stable zinc metal batteries. Chem 2024, 10, 3607-21.
32. Zeng, X.; Gong, Z.; Wang, C.; Cullen, P. J.; Pei, Z. Vanadium-based cathodes modification via defect engineering: strategies to support the leap from lab to commercialization of aqueous zinc-ion batteries. Adv. Energy. Mater. 2024, 14, 2401704.
33. Zhang, C.; Chou, S.; Guo, Z.; Dou, S. Beyond lithium-ion batteries. Adv. Funct. Mater. 2024, 34, 2308001.
34. Liu, M.; Cai, J.; Xu, J.; et al. Crystal plane reconstruction and thin protective coatings formation for superior stable Zn anodes cycling 1300 h. Small 2022, 18, e2201443.
35. Wang, C.; Zeng, X.; Qu, J.; et al. Salt-tolerance training enabled flexible molten hydrate gel electrolytes for energy-dense and stable zinc storage. Matter 2023, 6, 3993-4012.
36. Cai, J.; Wang, J.; Yu, X.; Long, Y.; Yang, Z. ZnO quantum dots@covalent organic frameworks for high-performance alkaline zinc-based batteries. J. Mater. Chem. A. 2023, 11, 25692-702.
37. Li, P.; Ren, J.; Li, C.; et al. MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem. Eng. J. 2023, 451, 138769.
38. Tian, G.; Wang, Q.; Qu, Z.; Yu, H.; Zhang, D.; Wang, Q. Coupling engineering of NH4+ pre-intercalation and rich oxygen vacancies in tunnel WO3 toward fast and stable rocking chair zinc-ion battery. Small 2023, 19, e2206701.
39. Liu, Y.; Wang, J.; Zeng, Y.; Liu, J.; Liu, X.; Lu, X. Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 2020, 16, e1907458.
40. Lu, X.; Zhao, C.; Chen, A.; et al. Reducing Zn-ion concentration gradient by SO42--immobilized interface coating for dendrite-free Zn anode. Chem. Eng. J. 2023, 451, 138772.
41. Zhang, Q.; Luan, J.; Huang, X.; et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.
42. Li, B.; Xue, J.; Han, C.; et al. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J. Colloid. Interface. Sci. 2021, 599, 467-75.
43. Li, S.; Liu, Y.; Zhao, X.; et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, e2007480.
44. Tan, T.; Lee, P.; Zettsu, N.; Teshima, K.; Yu, D. Y. Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer. J. Power. Sources. 2020, 453, 227874.
45. Cheng, Z.; Pan, P.; Jiang, L.; et al. Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries. J. Colloid. Interface. Sci. 2022, 628, 530-9.
46. Li, X.; Wang, J.; Han, C.; Zeng, K.; Wu, Z.; Wang, D. Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries. Adv. Powder. Mater. 2024, 3, 100228.
47. Wen, Q.; Fu, H.; Huang, Y.; et al. Constructing defect-free zincophilic organic layer via ultrasonic coating for anticorrosive and dendrite-free zinc anode. Nano. Energy. 2023, 117, 108810.
48. Chen, X.; Li, W.; Hu, S.; et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano. Energy. 2022, 98, 107269.
49. Feng, Z.; Zhang, Y.; Gao, Z.; et al. Construction interlayer structure of hydrated vanadium oxides with tunable P-band center of oxygen towards enhanced aqueous Zn-ion batteries. Adv. Powder. Mater. 2024, 3, 100167.
50. Chen, Y.; Ma, D.; Shen, S.; et al. New insights into high-rate and super-stable aqueous zinc-ion batteries via the design concept of voltage and solvation environment coordinated control. Energy. Storage. Mater. 2023, 56, 600-10.
51. Dai, Y.; Lu, R.; Zhang, C.; et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 2024, 7, 776-84.
52. Wang, S.; Yuan, C.; Chang, N.; et al. Act in contravention: a non-planar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 2021, 66, 889-96.
53. Yang, J.; Yan, H.; Hao, H.; et al. Synergetic modulation on solvation structure and electrode interface enables a highly reversible zinc anode for zinc-iron flow batteries. ACS. Energy. Lett. 2022, 7, 2331-9.
54. Pu, S. D.; Gong, C.; Tang, Y. T.; et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 2022, 34, e2202552.
55. Lamaison, S.; Wakerley, D.; Blanchard, J.; et al. High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure. Joule 2020, 4, 395-406.
56. Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 2022, 21, 1050-6.
57. Cao, J.; Zhang, D.; Gu, C.; et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy. Mater. 2021, 11, 2101299.