1. Xu, Y.; Du, Y.; Chen, H.; et al. Recent advances in rational design for high-performance potassium-ion batteries. Chem. Soc. Rev. 2024, 53, 7202-98.
2. Yu, L.; Shao, L.; Wang, S.; et al. A low-cost NiSe2 derived from waste nickel foam as a high-performance anode for sodium ion batteries. Mater. Today. Phys. 2022, 22, 100593.
3. Zhang, X.; Jia, C.; Zhang, J.; Zhang, L.; Liu, X. Smart aqueous zinc ion battery: operation principles and design strategy. Adv. Sci. 2024, 11, e2305201.
4. Yang, A.; Yang, C.; Xie, K.; et al. Benchmarking the safety performance of organic electrolytes for rechargeable lithium batteries: a thermochemical perspective. ACS. Energy. Lett. 2023, 8, 836-43.
5. Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J. Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy. Mater. 2021, 11, 2000962.
6. Yuan, X.; Wu, X.; Zeng, X.; et al. A fully aqueous hybrid electrolyte rechargeable battery with high voltage and high energy density. Adv. Energy. Mater. 2020, 10, 2001583.
7. Li, Y.; Ba, H.; Wang, Z.; et al. Electrolyte pH and operating potential: critical factors regulating the anodic oxidation and zinc storage mechanisms in aqueous zinc ion battery. Mater. Today. Energy. 2024, 39, 101460.
8. Xiao, W.; Yang, S.; Jiang, R.; et al. V4C3 MXene-derived Zn0.99V5O12·nH2O nanoribbons as advanced cathodes for ultra-long life aqueous zinc-ion batteries. J. Mater. Chem. A. 2024, 12, 5530-9.
9. Huang, Q.; Shao, L.; Shi, X.; et al. Na3V2O2(PO4)2F nanoparticles@reduced graphene oxide: a high-voltage polyanionic cathode with enhanced reaction kinetics for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 468, 143738.
10. Yuan, L.; Hao, J.; Johannessen, B.; et al. Hybrid working mechanism enables highly reversible Zn electrodes. eScience 2023, 3, 100096.
11. Wang, Y.; Ren, T.; Wang, Z.; et al. Enabling and boosting preferential epitaxial zinc growth via multi-interface regulation for stable and dendrite-free zinc metal batteries. Adv. Energy. Mater. 2024, 14, 2400613.
12. Miao, L.; Guo, Z.; Jiao, L. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy. Mater. 2023, 3, 300014.
13. Xu, Y.; Wang, C.; Shi, Y.; Miao, G.; Fu, J.; Huang, Y. A self-preserving pitted texture enables reversible topographic evolution and cycling on Zn metal anodes. J. Mater. Chem. A. 2021, 9, 25495-501.
14. Fan, W.; Li, P.; Shi, J.; et al. Atomic zincophilic sites regulating microspace electric fields for dendrite-free zinc anode. Adv. Mater. 2024, 36, e2307219.
15. Li, Y.; Wu, P.; Zhong, W.; et al. A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy. Environ. Sci. 2021, 14, 5563-71.
16. Zhou, M.; Sun, G.; Zang, S. Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. J. Energy. Chem. 2022, 69, 76-83.
17. Li, Y.; Li, L.; Zhao, Y.; et al. Homogenizing Zn deposition in hierarchical nanoporous Cu for a high-current, high areal-capacity Zn flow battery. Small 2023, 19, e2303005.
18. Yu, J.; Yu, W.; Zhang, Z.; Tan, P. Reunderstanding the uneven deposition in aqueous zinc-based batteries. Chem. Eng. J. 2024, 481, 148556.
19. Zhao, L.; Gao, X.; Gu, Q.; et al. Realizing a dendrite-free metallic-potassium anode using reactive prewetting chemistry. eScience 2024, 4, 100201.
20. Wang, J.; Ma, Q.; Sun, S.; et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth. eScience 2022, 2, 655-65.
21. Gonzalez, M. S.; Yan, Q.; Holoubek, J.; et al. Draining over blocking: nano-composite janus separators for mitigating internal shorting of lithium batteries. Adv. Mater. 2020, 32, e1906836.
22. Zhao, H.; Wan, M.; Zhu, X.; et al. Exploring the disparities in capacity and cycling stability of NH4V4O10 cathodes in ZnSO4 and Zn(OTf)2 electrolytes. ACS. Appl. Nano. Mater. 2024, 7, 23712-21.
23. Cao, J.; Zhang, D.; Zhang, X.; Zeng, Z.; Qin, J.; Huang, Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy. Environ. Sci. 2022, 15, 499-528.
24. Wang, H.; Zhou, A.; Hu, X.; et al. Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS. Nano. 2023, 17, 11946-56.
25. Yang, J.; Zhang, Y.; Li, Z.; et al. Three birds with one stone: Tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv. Funct. Mater. 2022, 32, 2209642.
26. Zhang, Y.; Bi, S.; Niu, Z.; Zhou, W.; Xie, S. Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy. Mater. 2022, 2, 200012.
27. Zhang, Y.; Shi, Y.; Hu, X.; et al. A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy. Mater. 2020, 10, 1903325.
28. Hu, Q.; Hu, J.; Li, Y.; et al. Insights into Zn anode surface chemistry for dendrite-free Zn ion batteries. J. Mater. Chem. A. 2022, 10, 11288-97.
29. Fang, T.; Wu, M.; Lu, F.; Zhou, Z.; Fu, Y.; Shi, Z. Dendrite-free Zn anodes enabled by interface engineering for non-alkaline Zn-air and Zn-ion batteries. Energy. Mater. 2024, 4, 400039.
30. Ying, H.; Huang, P.; Zhang, Z.; et al. Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro. Lett. 2022, 14, 180.
31. Guo, X.; Lu, J.; Wang, M.; et al. Solid-electrolyte interphase governs zinc ion transfer kinetics in high-rate and stable zinc metal batteries. Chem 2024, 10, 3607-21.
32. Zeng, X.; Gong, Z.; Wang, C.; Cullen, P. J.; Pei, Z. Vanadium-based cathodes modification via defect engineering: strategies to support the leap from lab to commercialization of aqueous zinc-ion batteries. Adv. Energy. Mater. 2024, 14, 2401704.
33. Zhang, C.; Chou, S.; Guo, Z.; Dou, S. Beyond lithium-ion batteries. Adv. Funct. Mater. 2024, 34, 2308001.
34. Liu, M.; Cai, J.; Xu, J.; et al. Crystal plane reconstruction and thin protective coatings formation for superior stable Zn anodes cycling 1300 h. Small 2022, 18, e2201443.
35. Wang, C.; Zeng, X.; Qu, J.; et al. Salt-tolerance training enabled flexible molten hydrate gel electrolytes for energy-dense and stable zinc storage. Matter 2023, 6, 3993-4012.
36. Cai, J.; Wang, J.; Yu, X.; Long, Y.; Yang, Z. ZnO quantum dots@covalent organic frameworks for high-performance alkaline zinc-based batteries. J. Mater. Chem. A. 2023, 11, 25692-702.
37. Li, P.; Ren, J.; Li, C.; et al. MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem. Eng. J. 2023, 451, 138769.
38. Tian, G.; Wang, Q.; Qu, Z.; Yu, H.; Zhang, D.; Wang, Q. Coupling engineering of NH4+ pre-intercalation and rich oxygen vacancies in tunnel WO3 toward fast and stable rocking chair zinc-ion battery. Small 2023, 19, e2206701.
39. Liu, Y.; Wang, J.; Zeng, Y.; Liu, J.; Liu, X.; Lu, X. Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 2020, 16, e1907458.
40. Lu, X.; Zhao, C.; Chen, A.; et al. Reducing Zn-ion concentration gradient by SO42--immobilized interface coating for dendrite-free Zn anode. Chem. Eng. J. 2023, 451, 138772.
41. Zhang, Q.; Luan, J.; Huang, X.; et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.
42. Li, B.; Xue, J.; Han, C.; et al. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J. Colloid. Interface. Sci. 2021, 599, 467-75.
43. Li, S.; Liu, Y.; Zhao, X.; et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, e2007480.
44. Tan, T.; Lee, P.; Zettsu, N.; Teshima, K.; Yu, D. Y. Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer. J. Power. Sources. 2020, 453, 227874.
45. Cheng, Z.; Pan, P.; Jiang, L.; et al. Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries. J. Colloid. Interface. Sci. 2022, 628, 530-9.
46. Li, X.; Wang, J.; Han, C.; Zeng, K.; Wu, Z.; Wang, D. Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries. Adv. Powder. Mater. 2024, 3, 100228.
47. Wen, Q.; Fu, H.; Huang, Y.; et al. Constructing defect-free zincophilic organic layer via ultrasonic coating for anticorrosive and dendrite-free zinc anode. Nano. Energy. 2023, 117, 108810.
48. Chen, X.; Li, W.; Hu, S.; et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano. Energy. 2022, 98, 107269.
49. Feng, Z.; Zhang, Y.; Gao, Z.; et al. Construction interlayer structure of hydrated vanadium oxides with tunable P-band center of oxygen towards enhanced aqueous Zn-ion batteries. Adv. Powder. Mater. 2024, 3, 100167.
50. Chen, Y.; Ma, D.; Shen, S.; et al. New insights into high-rate and super-stable aqueous zinc-ion batteries via the design concept of voltage and solvation environment coordinated control. Energy. Storage. Mater. 2023, 56, 600-10.
51. Dai, Y.; Lu, R.; Zhang, C.; et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 2024, 7, 776-84.
52. Wang, S.; Yuan, C.; Chang, N.; et al. Act in contravention: a non-planar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 2021, 66, 889-96.
53. Yang, J.; Yan, H.; Hao, H.; et al. Synergetic modulation on solvation structure and electrode interface enables a highly reversible zinc anode for zinc-iron flow batteries. ACS. Energy. Lett. 2022, 7, 2331-9.
54. Pu, S. D.; Gong, C.; Tang, Y. T.; et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 2022, 34, e2202552.
55. Lamaison, S.; Wakerley, D.; Blanchard, J.; et al. High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure. Joule 2020, 4, 395-406.
56. Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 2022, 21, 1050-6.
57. Cao, J.; Zhang, D.; Gu, C.; et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy. Mater. 2021, 11, 2101299.
58. Li, Z.; Shu, Z.; Shen, Z.; et al. Dissolution mechanism for dendrite-free aqueous zinc-ions batteries. Adv. Energy. Mater. 2024, 14, 2400572.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.