REFERENCES
1. Roda, D.; Trzciński, K.; Łapiński, M.; et al. The new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance. Sci. Rep. 2023, 13, 21263.
2. Zhang, G.; Wu, H.; Chen, D.; et al. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green. Energy. Environ. 2022, 7, 176-204.
3. Song, Y.; Zhang, J.; Dong, X.; Li, H. A review and recent developments in full-spectrum photocatalysis using ZnIn2S4-based photocatalysts. Energy. Tech. 2021, 9, 2100033.
4. Feng, C.; Wu, Z. P.; Huang, K. W.; Ye, J.; Zhang, H. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.
5. Yang, L.; Li, F.; Xiang, Q. Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting. Mater. Horiz. 2024, 11, 1638-57.
6. Gong, Y.; Liu, J.; Shao, B.; Zhong, D.; Lu, T. Stable metal-organic frameworks for PEC water splitting. FlatChem 2021, 27, 100240.
7. Xu, X. T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv. Sci. 2019, 6, 1801505.
8. Sun, J.; Wang, J.; Zhang, X.; et al. Using VO2 as a hole storage layer to improve PEC water splitting performance of BiVO4 photoanode. Int. J. Hydrogen. Energy. 2024, 69, 95-102.
9. Dong, G.; Yan, L.; Bi, Y. Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. J. Mater. Chem. A. 2023, 11, 3888-903.
10. Song, Y.; Ren, Y.; Cheng, H.; et al. Metal-organic framework glass catalysts from melting glass-forming cobalt-based zeolitic imidazolate framework for boosting photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 2023, 62, e202306420.
11. Singh, I.; Bhullar, V.; Mahajan, A. Interfacial engineering of a TiO2 photoanode via graphene nanoribbons for efficient quantum-dot-sensitized solar cells and photoelectrochemical water splitting. Energy. Fuels. 2023, 37, 15054-66.
12. Feng, Y.; Guan, L.; Li, J.; et al. Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting. J. Mater. Sci. Mater. Electron. 2020, 31, 14137-44.
13. Krysiak, O. A.; Junqueira, J. R.; Conzuelo, F.; et al. Importance of catalyst-photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. J. Solid. State. Electrochem. 2021, 25, 173-85.
14. Choi, M. J.; Kim, T. L.; Choi, K. S.; et al. Controlled band offsets in ultrathin hematite for enhancing the photoelectrochemical water splitting performance of heterostructured photoanodes. ACS. Appl. Mater. Interfaces. 2022, 14, 7788-95.
15. Zheng, X.; Song, Y.; Liu, Y.; et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord. Chem. Rev. 2023, 475, 214898.
16. Yan, Y.; Chen, Z.; Cheng, X.; Shi, W. Research progress of ZnIn2S4-based catalysts for photocatalytic overall water splitting. Catalysts 2023, 13, 967.
17. Long, C.; Dong, X.; Huang, J. Latest progress on photocatalytic H2 production by water splitting and H2 production coupled with selective oxidation of organics over ZnIn2S4-based photocatalysts. Energy. Fuels. 2023, 37, 136-58.
18. Ren, Y.; Foo, J. J.; Zeng, D.; Ong, W. ZnIn2S4-based nanostructures in artificial photosynthesis: insights into photocatalytic reduction toward sustainable energy production. Small. Struct. 2022, 3, 2200017.
19. Khosya, M.; Kumar, D.; Faraz, M.; Khare, N. Enhanced photoelectrochemical water splitting and photocatalytic degradation performance of visible light active ZnIn2S4/PANI nanocomposite. Int. J. Hydrogen. Energy. 2023, 48, 2518-31.
20. Mahadik, M. A.; Shinde, P. S.; Cho, M.; Jang, J. S. Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance. Appl. Catal. B. Environ. 2016, 184, 337-46.
21. Pan, F.; Long, L.; Li, Z.; et al. Substitutional Cd dopant as photohole transfer mediator boosting photoelectrochemical solar energy conversion of 2D Cd-ZnIn2S4 photoanode. Small 2024, 20, 2304846.
22. Lin, Y.; Fang, W.; Xv, R.; Fu, L. TiO2 nanoparticles modified with ZnIn2S4 nanosheets and Co-Pi groups: type II heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting. Int. J. Hydrogen. Energy. 2022, 47, 33361-73.
23. Chen, J.; Li, K.; Cai, X.; Zhao, Y.; Gu, X.; Mao, L. Sulfur vacancy-rich ZnIn2S4 nanosheet arrays for visible-light-driven water splitting. Mater. Sci. Semicond. Process. 2022, 143, 106547.
24. Song, Y.; Zheng, X.; Yang, Y.; et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution. Adv. Mater. 2024, 36, 2305835.
25. Bao, Z.; Jiang, Y.; Zhang, Z.; et al. Visible-light-responsive S-vacancy ZnIn2S4/N-doped TiO2 nanoarray heterojunctions for high-performance photoelectrochemical water splitting. J. Mater. Chem. A. 2024, 12, 15902-13.
26. Wang, J.; Sun, S.; Zhou, R.; et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1-19.
27. Lee, J.; Kim, H.; Lee, T.; Jang, W.; Lee, K. H.; Soon, A. Revisiting polytypism in hexagonal ternary sulfide ZnIn2S4 for photocatalytic hydrogen production within the Z-scheme. Chem. Mater. 2019, 31, 9148-55.
28. Yang, W.; Liu, B.; Fang, T.; et al. Layered crystalline ZnIn2S4 nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale 2016, 8, 18197-203.
29. Wang, J.; Chen, Y.; Zhou, W.; et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J. Mater. Chem. A. 2017, 5, 8451-60.
30. Luan, Q.; Xue, X.; Li, R.; et al. Boosting photocatalytic hydrogen evolution: orbital redistribution of ultrathin ZnIn2S4 nanosheets via atomic defects. Appl. Catal. B. Environ. 2022, 305, 121007.
31. Chong, W.; Ng, B.; Kong, X. Y.; Tan, L.; Putri, L. K.; Chai, S. Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation. Appl. Catal. B. Environ. 2023, 325, 122372.
32. Zhang, W.; Zhao, S.; Xing, Y.; et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution. Chem. Eng. J. 2022, 442, 136151.
33. Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. J. Materi. Sci. Technol. 2022, 122, 231-42.
34. Hao, C.; Tang, Y.; Shi, W.; Chen, F.; Guo, F. Facile solvothermal synthesis of a Z-scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chem. Eng. J. 2021, 409, 128168.
35. Alshgari, R. A.; Kumar, O. P.; Shah, J. H.; Mohammad, S.; Abid, A. G. Nanosphere-like ZnIn2S4 intercalated g-C3N4 for improved green oxygen production. J. Korean. Ceram. Soc. 2024, 61, 1013-26.
36. Li, H.; Chen, Z.; Zhao, L.; Yang, G. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare. Met. 2019, 38, 420-7.
37. Ye, L.; Li, Z. ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light. ChemCatChem 2014, 6, 2540-3.
38. Gou, X.; Cheng, F.; Shi, Y.; et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc. 2006, 128, 7222-9.
39. Geng, H.; Ying, P.; Li, K.; Zhao, Y.; Gu, X. Epitaxial In2S3/ZnIn2S4 heterojunction nanosheet arrays on FTO substrates for photoelectrochemical water splitting. Appl. Surf. Sci. 2021, 563, 150289.
40. Kale, B. B.; Bhirud, A. P.; Baeg, J. O.; Kulkarni, M. V. Template free architecture of hierarchical nanostructured ZnIn2S4 rose-like flowers for solar hydrogen production. J. Nanosci. Nanotechnol. 2017, 17, 1447-454.
41. Zhou, M. J.; Cui, P. Synthesis and photocatalytic properties of flower-like ZnIn2S4 microspheres by a solvothermal method. Adv. Mater. Res. 2013, 881-3, 1101-4.
42. Huang, Y.; He, J.; Xu, W.; et al. Converting Undesirable defects into activity sites enhances the photoelectrochemical performance of the ZnIn2S4 photoanode. Adv. Energy. Mater. 2024, 14, 2304376.
43. Cheng, K.; Liang, C. Preparation of Zn-In-S film electrodes using chemical bath deposition for photoelectrochemical applications. Sol. Energy. Mater. Sol. Cells. 2010, 94, 1137-45.
44. Sun, Y.; Xue, C.; Chen, L.; et al. Enhancement of interfacial charge transportation through construction of 2D-2D p-n heterojunctions in hierarchical 3D CNFs/MoS2/ZnIn2S 4 composites to enable high-efficiency photocatalytic hydrogen evolution. Solar. RRL. 2021, 5, 2000722.
45. Gao, Y.; Ji, X.; Zhang, D.; Liu, Z.; Lu, J. Microwave-assisted fabrication of CQDs/ZnIn2S4 nanocomposites for synergistic photocatalytic removal of Cr(VI) and rhodamine B. Inorg. Nano-Metal. Chem. 2021, 51, 451-7.
46. Chen, Z.; Li, D.; Xiao, G.; He, Y.; Xu, Y. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. J. Solid. State. Chem. 2012, 186, 247-54.
47. Mahadik, M. A.; Patil, R. P.; Chae, W.; Hwi, L. H.; Cho, M.; Suk, J. J. Microwave-assisted rapid synthesis of Cu2S:ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization. J. Ind. Eng. Chem. 2022, 108, 203-14.
48. Chang, Y. C.; Bi, J. N.; Pan, K. Y.; Chiao, Y. C. Microwave-assisted synthesis of SnO2@ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. Materials 2024, 17, 2367.
49. Mishra, M.; Huang, Y. C.; Wang, P. H.; Liu, S. P.; Lee, T. R.; Lee, T. C. Tuning the crystallinity and coverage of SiO2-ZnIn2S4 core-shell nanoparticles for efficient hydrogen generation. ACS. Appl. Mater. Interfaces. 2021, 13, 4043-50.
50. Sun, M.; Zhao, X.; Zeng, Q.; et al. Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity. Appl. Surf. Sci. 2017, 407, 328-36.
51. Bedala, K. K.; Gonugunta, P.; Soleimani, M.; et al. Facile synthesis of ZnIn2S4/Cu2O hierarchical heterostructures for enhanced selectivity and sensitivity of NH3 gas at room temperature. Appl. Surf. Sci. 2023, 640, 158315.
52. Xu, Z.; Shi, W.; Shi, Y.; et al. Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution. Appl. Surf. Sci. 2022, 595, 153482.
53. Chen, W.; Yan, R.; Zhu, J.; Huang, G.; Chen, Z. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl. Surf. Sci. 2020, 504, 144406.
54. Yang, R.; Mei, L.; Fan, Y.; et al. ZnIn2S4-based photocatalysts for energy and environmental applications. Small. Methods. 2021, 5, 2100887.
55. Fang, W.; Liu, J.; Zhang, Y.; et al. Alkaline induced indium gradient distribution in ZnmIn2S3+m/In(OH)3 heterojunction for improved photocatalytic H2 generation. Appl. Surf. Sci. 2020, 530, 147241.
56. Pan, Y.; Yuan, X.; Jiang, L.; et al. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 2018, 354, 407-31.
57. Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. D. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv. Mater. 2019, 31, 1903404.
58. Huang, L.; Han, B.; Huang, X.; et al. Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light. J. Alloys. Compd. 2019, 798, 553-9.
59. Chen, Y.; Huang, R.; Chen, D.; et al. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles. ACS. Appl. Mater. Interfaces. 2012, 4, 2273-9.
60. Uddin, A.; Muhmood, T.; Guo, Z.; Gu, J.; Chen, H.; Jiang, F. Hydrothermal synthesis of 3D/2D heterojunctions of ZnIn2S4/oxygen doped g-C3N4 nanosheet for visible light driven photocatalysis of 2,4-dichlorophenoxyacetic acid degradation. J. Alloys. Compd. 2020, 845, 156206.
61. Xu, L.; Deng, X.; Li, Z. Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Appl. Catal. B. Environ. 2018, 234, 50-5.
62. Li, M.; Ke, S.; Yang, X.; Shen, L.; Yang, M. Q. S-scheme homojunction of 0D cubic/2D hexagonal ZnIn2S4 for efficient photocatalytic reduction of nitroarenes. J. Colloid. Interface. Sci. 2024, 674, 547-59.
63. Wang, S.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037-40.
64. Zuo, G.; Wang, Y.; Teo, W. L.; Xian, Q.; Zhao, Y. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B. Environ. 2021, 291, 120126.
65. Chen, Y.; Wang, M.; He, B.; Zou, R.; Wu, Q. Facile design and fabrication of RP/ZnIn2S4 composite photocatalysts with efficient removal of antibiotics under visible-light irradiation. J. Alloys. Compd. 2023, 968, 171972.
66. Tu, B.; Che, R.; Wang, F.; Li, Y.; Li, J.; Qiu, J. New insights into the enhancement of TiO2/ZnIn2S4 heterojunction via cerium doping. Appl. Surf. Sci. 2023, 629, 157451.
67. Zhou, F.; Zhang, Y.; Wu, J.; et al. Utilizing Er-doped ZnIn2S4 for efficient photocatalytic CO2 conversion. Appl. Catal. B. Environ. 2024, 341, 123347.
68. Khosya, M.; Faraz, M.; Khare, N. Enhanced photoelectrochemical water splitting in ternary layered chalcogenide ZnIn2S4 coupled with MWCNT. Nano. Trends. 2023, 4, 100018.
69. Zhou, M.; Liu, Z.; Song, Q.; Li, X.; Chen, B.; Liu, Z. Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Appl. Catal. B. Environ. 2019, 244, 188-96.
70. Zhang, S.; Du, P.; Xiao, H.; et al. Fast interfacial carrier dynamics modulated by bidirectional charge transport channels in ZnIn2S4-based composite photoanodes probed by scanning photoelectrochemical microscopy. Angew. Chem. Int. Ed. 2024, 63, e202315763.
71. Li, J.; Wang, C.; Guo, Z.; Ruan, M. Piezoelectric effect promoted photoelectrochemical water splitting ability of ZnIn2S4 photoanode with highly exposed active (110) facets. ChemCatChem 2024, 16, e202301318.
72. Li, S.; Meng, L.; Tian, W.; Li, L. Engineering interfacial band bending over ZnIn2S4/SnS2 by interface chemical bond for efficient solar-driven photoelectrochemical water splitting. Adv. Energy. Mater. 2022, 12, 2200629.
73. Lv, G.; Long, L.; Wu, X.; et al. Realizing highly efficient photoelectrochemical performance for vertically aligned 2D ZnIn2S4 array photoanode via controlled facet and phase modulation. Appl. Surf. Sci. 2023, 609, 155335.
74. Khosya, M.; Kumar, D.; Faraz, M.; Khare, N. Visible light active ZnIn2S4/g-C3N4 heterostructure nanocomposite photoelectrode for efficient photoelectrochemical water splitting activity. Adv. Powder. Technol. 2023, 34, 104051.
75. Hao, Z.; Wang, R.; Zhang, L.; et al. Sufficient energy band utilization profited from spatially discrete heterogeneous interfaces to induce efficient photoelectrochemical water splitting for ZnIn2S4 photoanode. Surf. Interfaces. 2024, 51, 104667.
76. Wang, L.; Zheng, M.; Lai, L.; et al. Immobilization of prussian blue nanoparticles onto Au-modified ZnIn2S4 photoanode for efficient photoelectrochemical water splitting. Eur. J. Inorg. Chem. 2024, 27, e202400007.
77. Fan, B.; Chen, Z.; Liu, Q.; Zhang, Z.; Fang, X. One-pot hydrothermal synthesis of Ni-doped ZnIn2S4 nanostructured film photoelectrodes with enhanced photoelectrochemical performance. Appl. Surf. Sci. 2016, 370, 252-9.
78. Qian, H.; Liu, Z.; Guo, Z.; Ruan, M.; Ma, J. Hexagonal phase/cubic phase homogeneous ZnIn2S4 n-n junction photoanode for efficient photoelectrochemical water splitting. J. Alloys. Compd. 2020, 830, 154639.
79. Qian, H.; Liu, Z.; Ya, J.; Xin, Y.; Ma, J.; Wu, X. Construction homojunction and co-catalyst in ZnIn2S4 photoelectrode by Co ion doping for efficient photoelectrochemical water splitting. J. Alloys. Compd. 2021, 867, 159028.
80. Wu, Y.; Yao, S.; Lv, G.; et al. Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. J. Catal. 2021, 401, 262-70.
81. Xu, W.; Gao, W.; Meng, L.; Tian, W.; Li, L. Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting. Adv. Energy. Mater. 2021, 11, 2101181.
82. Wu, K.; Yao, C.; Wu, P.; et al. Highly efficient hydrogen production performance of g-C3N4 quantum dot-sensitized WO3/Ni-ZnIn2S4 nanosheets. Appl. Phys. A. 2022, 128, 6055.
83. Fan, H.; Jin, Y.; Liu, K.; Liu, W. One-step MOF-templated strategy to fabrication of Ce-doped ZnIn2S4 tetrakaidecahedron hollow nanocages as an efficient photocatalyst for hydrogen evolution. Adv. Sci. 2022, 9, 2104579.
84. Zhou, D.; Xue, X.; Wang, X.; et al. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: modulating charge flow and balancing H adsorption/desorption. Appl. Catal. B. Environ. 2022, 310, 121337.
85. Dong, W.; Zhou, S.; Ma, Y.; et al. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare. Met. 2023, 42, 1195-204.
86. Shi, X.; Dai, C.; Wang, X.; et al. Facile construction TiO2/ZnIn2S4/Zn0.4Ca0.6In2S4 ternary hetero-structure photo-anode with enhanced photo-electrochemical water-splitting performance. Surf. Interfaces. 2021, 26, 101323.
87. Hu, Z.; Wang, R.; Han, C.; Chen, R. Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting. J. Colloid. Interface. Sci. 2022, 628, 946-54.
88. Zhao, Y.; Linghu, X.; Shu, Y.; et al. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. J. Environ. Chem. Eng. 2022, 10, 108077.
89. Yue, Y.; Zou, J. Oxygen vacancy-suppression strengthened the internal electric field in ZnIn2S4/BiVO4 S-scheme heterojunction to boost photocatalytic removal of aqueous pollutants. J. Environ. Chem. Eng. 2024, 12, 113473.
90. Wang, S.; Zhang, D.; Pu, X.; Zhang, L.; Zhang, D.; Jiang, J. Photothermal-enhanced S-scheme heterojunction of hollow core-shell FeNi2S4@ZnIn2S4 toward photocatalytic hydrogen evolution. Small 2024, 20, 2311504.
91. Liu, D.; Jiang, L.; Chen, D.; et al. Twin S-scheme g-C3N4/CuFe2O4/ZnIn2S4 heterojunction with a self-supporting three-phase system for photocatalytic CO2 reduction: mechanism insight and DFT calculations. ACS. Catal. 2024, 14, 5326-43.
92. Wang, H.; Ning, Y.; Tang, Q.; et al. Ultrathin 2D/2D ZnIn2S4/La2Ti2O7 nanosheets with a Z-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Dalton. Trans. 2024, 53, 13491-502.
93. Xu, W.; Tian, W.; Meng, L.; Cao, F.; Li, L. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv. Energy. Mater. 2021, 11, 2003500.
94. Li, J.; Wu, C.; Li, J.; Dong, B.; Zhao, L.; Wang, S. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chin. J. Catal. 2022, 43, 339-49.
95. Yue, Y.; Zou, J. Boosting interfacial charge separation for ZnIn2S4 homojunction by lattice matching effect to enhance photocatalytic performance. J. Alloys. Compd. 2023, 966, 171659.
96. Wang, H.; Li, M.; You, Z.; Chen, Y.; Liu, Y. An innovative Zn3In2S6/ZnIn2S4 homojunction photocatalyst with enhanced interfacial charge transfer for the highly efficient degradation of tetracycline under visible radiation. J. Environ. Manage. 2024, 365, 121605.
97. Jiang, Z.; Li, K.; Cai, X.; et al. Enhanced performance of FeOOH/ZnIn2S4/Au nanosheet arrays for visible light water splitting. J. Mater. Sci. Mater. Electron. 2022, 33, 6070-81.
98. Li, C.; Liu, X.; Ding, G.; et al. Interior and surface synergistic modifications modulate the SnNb2O6/Ni-doped ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution. Inorg. Chem. 2022, 61, 4681-9.
99. Wang, G.; Sun, X.; Xia, C.; Li, H.; Dong, B.; Cao, L. Sulfur poisoning-resistant TiO2/Cu-doped ZnIn2S4 photoanode for achieving efficient sulfur oxidation. Colloids. Surf. A. Physicochem. Eng. Aspects. 2024, 689, 133656.
100. Peng, Y.; Guo, X.; Xu, S.; et al. Surface modulation of MoS2/O-ZnIn2S4 to boost photocatalytic H2 evolution. J. Energy. Chem. 2022, 75, 276-84.
101. Zhao, H.; Yao, Y.; Cai, M.; et al. Synergistic selenium doping and colloidal quantum dots decoration over ZnIn2S4 enabling high-efficiency photoelectrochemical hydrogen peroxide production. Chem. Eng. J. 2024, 491, 151925.
102. Jeong, Y. J.; Tan, R.; Nam, S.; et al. Rapid surface reconstruction of In2S3 photoanode via flame treatment for enhanced photoelectrochemical performance. Adv. Mater. 2024, 2403164.
103. Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428-69.