REFERENCES
1. Iqbal, S. M. A.; Mahgoub, I.; Du, E.; Leavitt, M. A.; Asghar, W. Advances in healthcare wearable devices. npj. Flex. Electron. 2021, 5, 107.
2. Babu, M.; Lautman, Z.; Lin, X.; Sobota, M. H. B.; Snyder, M. P. Wearable devices: implications for precision medicine and the future of health care. Annu. Rev. Med. 2024, 75, 401-15.
3. Yan, Z.; Luo, S.; Li, Q.; Wu, Z. S.; Liu, S. F. Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications. Adv. Sci. 2024, 11, e2302172.
4. He, J.; Cao, L.; Cui, J.; et al. Flexible energy storage devices to power the future. Adv. Mater. 2024, 36, e2306090.
5. He, A.; He, J.; Cao, L.; et al. Flexible supercapacitor integrated systems. Adv. Mater. Technol. 2024, 9, 2301931.
6. Zhang, Y.; Mei, H.; Cao, Y.; et al. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev. 2021, 438, 213910.
7. Benzigar, M. R.; Dasireddy, V. D. B. C.; Guan, X.; Wu, T.; Liu, G. Advances on emerging materials for flexible supercapacitors: current trends and beyond. Adv. Funct. Mater. 2020, 30, 2002993.
8. Zhou, X.; Xu, J.; Zhu, W.; et al. A new laminated structure for electrodes to boost the rate performance of long linear supercapacitors. Mater. Lett. 2017, 204, 177-80.
9. Kim, J.; Yu, H.; Jung, J. Y.; et al. 3D architecturing strategy on the utmost carbon nanotube fiber for ultra-high performance fiber-shaped supercapacitor. Adv. Funct. Mater. 2022, 32, 2113057.
10. Xu, P.; Gu, T.; Cao, Z.; et al. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy. Mater. 2014, 4, 1300759.
11. Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 2013, 52, 13453-7.
12. Shi, P.; Li, L.; Hua, L.; et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS. Nano. 2017, 11, 444-52.
13. Yu, H.; Kim, J.; Lee, D.; et al. Active material-free continuous carbon nanotube fibers with unprecedented enhancement of physicochemical properties for fiber-type solid-state supercapacitors. Adv. Energy. Mater. 2024, 14, 2303003.
14. Cheng, H.; Li, Q.; Zhu, L.; Chen, S. Graphene fiber-based wearable supercapacitors: recent advances in design, construction, and application. Small. Methods. 2021, 5, e2100502.
15. Hu, Y.; Cheng, H.; Zhao, F.; et al. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448-51.
16. Yu, J.; Wang, M.; Xu, P.; et al. Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon 2017, 119, 332-8.
17. Qu, G.; Cheng, J.; Li, X.; et al. A Fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646-52.
19. Zhai, S.; Jiang, W.; Wei, L.; et al. All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Mater. Horiz. 2015, 2, 598-605.
20. Lin, J.; Ko, T.; Lin, Y.; Pan, C. Various treated conditions to prepare porous activated carbon fiber for application in supercapacitor electrodes. Energy. Fuels. 2009, 23, 4668-77.
21. Su, C.; Wang, C.; Lu, K.; Shih, W. Evaluation of activated carbon fiber applied in supercapacitor electrodes. Fibers. Polym. 2014, 15, 1708-14.
22. Jin, Z.; Yan, X.; Yu, Y.; Zhao, G. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A. 2014, 2, 11706-15.
23. Chi, G.; Gong, W.; Xiao, G.; et al. Wire-shaped, all-solid-state, high-performance flexible asymmetric supercapacitors based on (Mn,Fe) oxides/reduced graphene oxide/oxidized carbon nanotube fiber hybrid electrodes. Nano. Energy. 2023, 117, 108887.
24. Chen, X.; Paul, R.; Dai, L. Carbon-based supercapacitors for efficient energy storage. Nat. Scie. Rev. 2017, 4, 453-89.
25. Sharma, P.; Bhatti, T. A review on electrochemical double-layer capacitors. Energy. Convers. Manag. 2010, 51, 2901-12.
26. Frackowiak, E.; Jurewicz, K.; Delpeux, S.; Béguin, F. Nanotubular materials for supercapacitors. J. Power. Sources. 2001, 97-98, 822-5.
27. Shih, Y.; Chen, Y.; Chen, C.; Lin, J.; Huang, C. The electrosorption characteristics of simple aqueous ions on loofah-derived activated carbon decorated with manganese dioxide polymorphs: the effect of pseudocapacitance and beyond. Chem. Eng. J. 2021, 425, 130606.
28. Chatterjee, D. P.; Nandi, A. K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A. 2021, 9, 15880-918.
29. Jäckel, N.; Simon, P.; Gogotsi, Y.; Presser, V. Increase in capacitance by subnanometer pores in carbon. ACS. Energy. Lett. 2016, 1, 1262-5.
30. Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power. Sources. 2006, 158, 765-72.
31. Barbieri, O.; Hahn, M.; Herzog, A.; Kötz, R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43, 1303-10.
32. Raza, W.; Ali, F.; Raza, N.; et al. Recent advancements in supercapacitor technology. Nano. Energy. 2018, 52, 441-73.
33. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy. Environ. Sci. 2014, 7, 1597.
34. Zhu, X. Recent advances of transition metal oxides and chalcogenides in pseudo-capacitors and hybrid capacitors: a review of structures, synthetic strategies, and mechanism studies. J. Energy. Storage. 2022, 49, 104148.
35. Deng, L.; Wang, Z.; Cui, H.; et al. Mechanistic understanding of the underlying energy storage mechanism of α-MnO2-based pseudo-supercapacitors. Adv. Mater. 2024, 36, e2408476.
36. Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta. 2000, 45, 2483-98.
37. Sun, J.; Huang, Y.; Sze, S. Y. N.; et al. Recent progress of fiber-shaped asymmetric supercapacitors. Mater. Today. Energy. 2017, 5, 1-14.
38. Wang, X.; Liu, B.; Liu, R.; et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 2014, 53, 1849-53.
39. Wang, H.; Zhang, G.; Huang, Z.; Li, Y.; Yang, J.; Long, Z. A high potential (2.5V) carbon fiber paper-based asymmetric supercapacitor with oxygen vacancies and hierarchical porous hollow structure. Chem. Eng. J. 2024, 496, 154165.
40. Vandana, M.; Bijapur, K.; Soman, G.; Hegde, G. Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications. Crit. Rev. Solid. State. Mater. Sci. 2024, 49, 335-70.
41. Huang, B.; Liu, W.; Lan, Y.; et al. Highly ion-conducting, robust and environmentally stable poly(vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors. Chem. Eng. J. 2024, 480, 147888.
42. Chen, Y.; Ren, H.; Rong, D.; Huang, Y.; He, S.; Rong, Q. Stretchable all-in-one supercapacitor enabled by poly(ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance. Polymer 2023, 270, 125796.
43. Tripathi, M.; Bobade, S. M.; Kumar, A. Nanocomposite polymer gel with dispersed alumina as an efficient electrolyte for application in supercapacitors. J. Phy. Chem. Solids. 2021, 152, 109944.
44. Ding, J.; Yang, Y.; Poisson, J.; et al. Recent advances in biopolymer-based hydrogel electrolytes for flexible supercapacitors. ACS. Energy. Lett. 2024, 9, 1803-25.
45. Ye, Y.; Yu, L.; Lizundia, E.; Zhu, Y.; Chen, C.; Jiang, F. Cellulose-based ionic conductor: a emerging material toward sustainable devices. Chem. Rev. 2023, 123, 9204-64.
46. Ye, W.; Wang, H.; Ning, J.; Zhong, Y.; Hu, Y. New types of hybrid electrolytes for supercapacitors. J. Energy. Chem. 2021, 57, 219-32.
47. Subadevi, R.; Sivakumar, M.; Rajendran, S.; Wu, H.; Wu, N. Development and characterizations of PVdF-PEMA gel polymer electrolytes. Ionics 2012, 18, 283-9.
48. Du, H.; Zhang, J. Shape memory polymer based on chemically cross-linked poly(vinyl alcohol) containing a small number of water molecules. Colloid. Polym. Sci. 2010, 288, 15-24.
49. Chen, Y.; Jin, H.; Zhang, J.; et al. Stretchable flexible fiber supercapacitors for wearable integrated devices. J. Mater. Chem. A. 2024, 12, 18958-67.
50. He, J.; Ma, F.; Xu, W.; et al. Wide temperature all-solid-state Ti3C2Tx quantum dots/L-Ti3C2Tx fiber supercapacitor with high capacitance and excellent flexibility. Adv. Sci. 2024, 11, e2305991.
51. Ma, F.; Li, L.; Chen, X.; et al. Highly matched electrode for all-solid-state sodium-ion fiber hybrid supercapacitor with wide temperature and high energy density. Chem. Eng. J. 2024, 497, 154723.
52. Li, M.; Luo, Z.; Quan, J.; et al. Oxygen defect enriched hematite nanorods @ reduced graphene oxide core-sheath fiber for superior flexible asymmetric supercapacitor. J. Colloid. Interface. Sci. 2024, 653, 77-84.
53. Ovhal, M. M.; Lee, H. B.; Satale, V. V.; Tyagi, B.; Chowdhury, S.; Kang, J. One-meter-long, all-3D-printed supercapacitor fibers based on structurally engineered electrode for wearable energy storage. Adv. Energy. Mater. 2024, 14, 2303053.
54. Hu, H.; Yang, C.; Chen, F.; et al. High-entropy engineering reinforced surface electronic states and structural defects of hierarchical metal oxides@graphene fibers toward high-performance wearable supercapacitors. Adv. Mater. 2024, 36, e2406483.
55. Bai, B.; Shui, J.; Wang, Y.; Su, Z.; Qiu, L.; Du, P. Copper phosphosulfide nanosheets on Cu-coated graphene fibers as asymmetric supercapacitor electrodes. ACS. Appl. Nano. Mater. 2024, 7, 12387-98.
56. Gao, X.; Bi, J.; Xie, L.; et al. Preparation of NiFe2O4@ slit modified hollow carbon fiber via electrospinning for supercapacitor electrode material. J. Power. Sources. 2024, 591, 233838.
57. Mei, X.; Yang, C.; Chen, F.; et al. Interfacially ordered NiCoMoS nanosheets arrays on hierarchical Ti3C2Tx MXene for high-energy-density fiber-shaped supercapacitors with accelerated pseudocapacitive kinetics. Angew. Chem. Int. Ed. 2024, 63, e202409281.
58. Li, R.; Song, P.; Ji, Z.; et al. Coaxial core-sheath shaped supercapacitor based on polypyrrole functionalized graphene/carbon nanotubes hollow fibers with ultrahigh length specific capacitance and energy density for wearable electronics. Appl. Surf. Sci. 2024, 649, 159188.
59. Kim, J.; Kim, Y.; Ramasamy, S.; Kim, S. High-energy and wearable fiber-shaped asymmetric supercapacitors based on the combination of fluorinated polyimide and Co3O4 on carbon fibers. J. Power. Sources. 2024, 606, 234570.
60. Zhang, J.; Wang, X.; Hang, G.; et al. Polypyrrole in-situ polymerized MXene/TPU fiber electrode for flexible supercapacitors. Compos. Commun. 2024, 45, 101817.
61. Zhou, X.; Chen, B.; Wang, W.; et al. Core-shell heterostructured Ni(OH)2@ activation Zn-Co-Ni layered double hydroxides electrode for flexible all-solid-state coaxial fiber-shaped asymmetric supercapacitors. J. Colloid. Interface. Sci. 2024, 661, 781-92.
62. Sun, Y.; Li, T.; Liu, X.; et al. Modulating oxygen vacancies in MXene/MoO3-x smart fiber by defect engineering for ultrahigh volumetric energy density supercapacitors and wearable SERS sensors. Chem. Eng. J. 2024, 494, 152911.
63. Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419-45.
64. Chen, S.; Qiu, L.; Cheng, H. M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 2020, 120, 2811-78.
65. Wang, Y.; Zhang, L.; Hou, H.; et al. Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 2021, 56, 173-200.
66. Le, V. T.; Kim, H.; Ghosh, A.; et al. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS. Nano. 2013, 7, 5940-7.
67. Yu, D.; Qian, Q.; Wei, L.; et al. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647-62.
68. Liu, C.; Wang, L.; Xia, Z.; Chen, R.; Wang, H.; Liu, Y. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 2022, 431, 134099.
69. Yu, C.; Xu, H.; Zhao, X.; et al. Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. Carbon 2020, 157, 106-12.
70. De, B.; Banerjee, S.; Pal, T.; et al. Transition Metal oxide-/carbon-/electronically conducting polymer-based ternary composites as electrode materials for supercapacitors. In: Kar KK, editor. Handbook of Nanocomposite Supercapacitor Materials II. Cham: Springer International Publishing; 2020. pp. 387-434.
71. Razal, J.; Gilmore, K.; Wallace, G. Carbon nanotube biofiber formation in a polymer-free coagulation bath. Adv. Funct. Mater. 2008, 18, 61-6.
72. Jeong, Y. H.; Im, J.; Lee, D.; et al. Coagulation engineering of surfactant-based wet spinning of carbon nanotube fibers. Carbon. Lett. 2024, 34, 1803-15.
73. Yang, Z.; Yang, Y.; Huang, Y.; et al. Wet-spinning of carbon nanotube fibers: dispersion, processing and properties. Natl. Sci. Rev. 2024, 11, nwae203.
74. Jestin, S.; Poulin, P. Wet spinning of CNT-based fibers. In: Schulz M. J.; Shanov V. N.; Yin Z.; editors. Nanotube Superfiber Materials, Elsevier: 2014. pp 167-209.
75. Mukai, K.; Asaka, K.; Wu, X.; et al. Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Appl. Phys. Express. 2016, 9, 055101.
76. Sun, G.; Zhou, J.; Yu, F.; Zhang, Y.; Pang, J. H. L.; Zheng, L. Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays. J. Solid. State. Electrochem. 2012, 16, 1775-80.
77. Zhang, Q.; Wang, D.; Huang, J.; et al. Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon 2010, 48, 2855-61.
78. Fei, F.; Zhou, X.; Wang, S.; et al. Tunning of optimal parameters for growth of spinnable carbon nanotube arrays at a relatively low temperature and pressure. Carbon 2022, 192, 452-61.
79. Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358-61.
80. Du, R.; Zhao, Q.; Zhang, N.; Zhang, J. Macroscopic carbon nanotube-based 3D monoliths. Small 2015, 11, 3263-89.
81. Kaushal, A.; Alexander, R.; Mandal, D.; Joshi, J. B.; Dasgupta, K. Remarkable enhancement in CNT fiber synthesis by reducing convection vortex in floating catalyst chemical vapour deposition. Chem. Eng. J. 2023, 452, 139142.
82. Alexander, R.; Khausal, A.; Bahadur, J.; Dasgupta, K. Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield. Carbon. Trends. 2022, 9, 100211.
83. Senokos, E.; Rana, M.; Vila, M.; et al. Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels. Nanoscale 2020, 12, 16980-6.
84. Zhou, X.; Zheng, X.; Li, M.; et al. Efficient power generation based-on carbon yarn in coaxial hydrogen peroxide fuel cells. Mater. Today. Phys. 2024, 44, 101432.
85. Zhou, X.; Li, M.; Cao, X.; et al. Direct catalysis-driven yarn artificial muscles: chemically induced actuation. Adv. Funct. Mater. 2024, 34, 2409634.
86. Yang, Z.; Jia, Y.; Niu, Y.; et al. One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor. J. Energy. Chem. 2020, 51, 434-41.
87. Zhang, D.; Miao, M.; Niu, H.; Wei, Z. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS. Nano. 2014, 8, 4571-9.
88. Di, J.; Zhang, X.; Yong, Z.; et al. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529-38.
89. Pal, M.; Subhedar, K. M. CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy. Storage. Mater. 2023, 57, 136-70.
90. Xu, J.; Ding, J.; Zhou, X.; et al. Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. J. Power. Sources. 2017, 340, 302-8.
91. Zheng, X.; Zhou, X.; Xu, J.; et al. Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density. J. Mater. Sci. 2020, 55, 8251-63.
92. Zheng, X.; Zhang, K.; Yao, L.; Qiu, Y.; Wang, S. Hierarchically porous sheath-core graphene-based fiber-shaped supercapacitors with high energy density. J. Mater. Chem. A. 2018, 6, 896-907.
93. Zheng, X.; Hu, Q.; Zhou, X.; Nie, W.; Li, C.; Yuan, N. Graphene-based fibers for the energy devices application: a comprehensive review. Mater. Des. 2021, 201, 109476.
94. Lakra, R.; Kumar, R.; Sahoo, P. K.; Thatoi, D.; Soam, A. A mini-review: graphene based composites for supercapacitor application. Inorg. Chem. Commun. 2021, 133, 108929.
95. Zheng, X.; Yao, L.; Qiu, Y.; Wang, S.; Zhang, K. Core-sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS. Appl. Energy. Mater. 2019, 2, 4335-44.
96. Kou, L.; Huang, T.; Zheng, B.; et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.
97. Zheng, X.; Nie, W.; Hu, Q.; et al. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater. Des. 2021, 200, 109442.
98. Jia, X.; Du, Y.; Xie, F.; Li, H.; Zhang, M. Enhancing electron/ion transport in SnO2 quantum dots decorated polyaniline/graphene hybrid fibers for wearable supercapacitors with high energy density. ACS. Appl. Mater. Interfaces. 2024, 16, 17937-45.
99. Bai, B.; Wang, Y.; Shui, J.; Su, Z.; Qiu, L.; Du, P. 3D architecting triple gradient graphene-based fiber electrode for high-performance asymmetric supercapacitors. J. Power. Sources. 2024, 607, 234545.
100. Hussain, N.; Abbas, Z.; Nabeela, K.; Mobin, S. M. Free-standing metal-organic frameworks on electrospun core-shell graphene nanofibers for flexible hybrid supercapacitors. J. Mater. Chem. A. 2024, 12, 17642-50.
101. Zeng, J.; Ji, X.; Ma, Y.; et al. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 2018, 30, e1705380.
102. Fang, B.; Chang, D.; Xu, Z.; Gao, C. A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 2020, 32, e1902664.
103. Lu, X.; Bai, Y.; Wang, R.; Sun, J. A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J. Mater. Chem. A. 2016, 4, 18164-73.
104. Artigas-arnaudas, J.; Muñoz, B. K.; Sánchez, M.; de, P. J.; Utrilla, M. V.; Ureña, A. Surface modifications of carbon fiber electrodes for structural supercapacitors. Appl. Compos. Mater. 2022, 29, 889-900.
105. Noh, J.; Yoon, C.; Kim, Y. K.; Jang, J. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 2017, 116, 470-8.
106. Chiu, M.; Lin, L.; Hsiao, Y. Improving energy storage ability of acid-treated carbon fibers via simple sonication and heat treatments for flexible supercapacitors. Energy. Reports. 2021, 7, 4205-13.
107. Li, Y.; Zhao, Y.; Zhang, J.; et al. Hierarchical porous carbon fiber for fiber-shaped supercapacitor. Funct. Mater. Lett. 2021, 14, 2150016.
108. Chen, J.; Xie, J.; Jia, C. Q.; Song, C.; Hu, J.; Li, H. Economical preparation of high-performance activated carbon fiber papers as self-supporting supercapacitor electrodes. Chem. Eng. J. 2022, 450, 137938.
109. Pandi, K.; Sankar, K. V.; Kalpana, D.; Lee, Y. S.; Selvan, R. K. Fabrication of solid-state flexible fiber supercapacitor using Agave Americana derived activated carbon and its performance analysis at different conditions. ChemistrySelect 2016, 1, 6713-25.
110. Wang, Q.; Ma, W.; Yin, E.; et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance flexible supercapacitors. ACS. Appl. Energy. Mater. 2020, 3, 9360-8.
111. Wang, C.; Hu, K.; Li, W.; et al. Wearable wire-shaped symmetric supercapacitors based on activated carbon-coated graphite fibers. ACS. Appl. Mater. Interfaces. 2018, 10, 34302-10.
112. Li, H.; Liang, J.; Li, H.; et al. Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. J. Energy. Chem. 2019, 31, 95-100.
113. Shi, L.; Li, X.; Jia, Y.; et al. Continuous carbon nanofiber bundles with tunable pore structures and functions for weavable fibrous supercapacitors. Energy. Storage. Mater. 2016, 5, 43-9.
114. Lingappan, N.; Lim, S.; Lee, G.; et al. Carbon triple-junction nanostructures for solid-state stretchable and flexible fabric/yarn-type symmetric supercapacitors. J. Energy. Storage. 2024, 83, 110733.
115. Thomas, S. A.; Cherusseri, J.; Rajendran, D. N. Recent advancements in carbon fiber-based sustainable electrodes for flexible and wearable supercapacitors. RSC. Sustain. 2024, 2, 2403-43.
116. Lim, T.; Seo, B. H.; Kim, S. J.; Han, S.; Lee, W.; Suk, J. W. Nitrogen-doped activated hollow carbon nanofibers with controlled hierarchical pore structures for high-performance, binder-free, flexible supercapacitor electrodes. ACS. Omega. 2024, 9, 8247-54.
117. He, C.; Cheng, J.; Liu, Y.; Zhang, X.; Wang, B. Thin-walled hollow fibers for flexible high energy density fiber-shaped supercapacitors. Energy. Mater. 2022, 1, 100010.
118. Jiao, Z.; Wu, Q.; Qiu, J. Preparation and electrochemical performance of hollow activated carbon fiber - carbon nanotubes three-dimensional self-supported electrode for supercapacitor. Mater. Des. 2018, 154, 239-45.
119. Li, Y.; Kang, Z.; Yan, X.; et al. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale 2018, 10, 9360-8.
120. Asfaw, H. D.; Kucernak, A.; Greenhalgh, E. S.; Shaffer, M. S. Electrochemical performance of supercapacitor electrodes based on carbon aerogel-reinforced spread tow carbon fiber fabrics. Compos. Sci. Technol. 2023, 238, 110042.
121. Jiao, Z.; Wu, Q.; Cardon, L.; Qiu, J. Preparation and electrochemical performance of hollow activated carbon fiber self-supported electrode for supercapacitor. J. Nanosci. Nanotechnol. 2020, 20, 2316-23.
122. Zhang, Y.; Zuo, L.; Zhang, L.; et al. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano. Res. 2016, 9, 2747-59.
123. Ma, Y.; Liu, Q.; Li, W.; et al. Ultralight and robust carbon nanofiber aerogels for advanced energy storage. J. Mater. Chem. A. 2021, 9, 900-7.
124. Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano. Energy. 2017, 36, 268-85.
125. Zhang, Y.; Zhang, X.; Yang, K.; et al. Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. J. Mater. Chem. A. 2018, 6, 12250-8.
126. Hossain, M. M.; Kungsadalpipob, P.; He, N.; Gao, W.; Bradford, P. Multilayer core-shell fiber device for improved strain sensing and supercapacitor applications. Small 2024, 20, e2401031.
127. Wang, Q.; Yang, Y.; Chen, W.; et al. Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors. J. Alloys. Compd. 2023, 935, 168110.
128. Du, X.; Hou, C.; Kimura, H.; et al. Restricted and epitaxial growth of MnO2-x nano-flowers in/out carbon nanofibers for long-term cycling stability supercapacitor electrodes. J. Colloid. Interface. Sci. 2024, 673, 92-103.
129. Tian, X.; Cheng, X. ; Liao S, Chen J.; Lv P, Wei Q. High electrochemical capacity MnO2/graphene hybrid fibers based on crystalline regulatable MnO2 for wearable supercapacitors. ACS. Appl. Mater. Interfaces. 2023, 15, 52415-26.
130. Chung, M.; Lo, C. High-performance binder-free RuO2/electrospun carbon fiber for supercapacitor electrodes. Electrochim. Acta. 2020, 364, 137324.
131. Noh, S. H.; Lee, H. B.; Lee, K. S.; Lee, H.; Han, T. H. Sub-second joule-heated RuO2-decorated nitrogen- and sulfur-doped graphene fibers for flexible fiber-type supercapacitors. ACS. Appl. Mater. Interfaces. 2022, 14, 29867-77.
132. Li, X.; Liu, D.; Yin, X.; et al. Hydrated ruthenium dioxides @ graphene based fiber supercapacitor for wearable electronics. J. Power. Sources. 2019, 440, 227143.
133. Zhai, S.; Wang, C.; Karahan, H. E.; et al. Nano-RuO2 -decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density. Small 2018, e1800582.
134. Yin, Q.; Li, D.; Zhang, J.; et al. An all-solid-state fiber-type supercapacitor based on hierarchical Ni/NiO@CoNi-layered double hydroxide core-shell nanoarrays. J. Alloys. Compd. 2020, 813, 152187.
135. Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS. Appl. Mater. Interfaces. 2016, 8, 1774-9.
136. Ahn, J.; Padmajan, S. S.; Jeong, Y.; et al. High-energy-density fiber supercapacitors based on transition metal oxide nanoribbon yarns for comprehensive wearable electronics. Adv. Fiber. Mater. 2024, 6, 1927-41.
137. Kumar, A.; Rathore, H. K.; Sarkar, D.; Shukla, A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochem. Sci. Adv. 2022, 2, e2100187.
138. Ahmad, F.; Shahzad, A.; Danish, M.; et al. Recent developments in transition metal oxide-based electrode composites for supercapacitor applications. J. Energy. Storage. 2024, 81, 110430.
139. Xu, Q.; Lu, C.; Sun, S.; Zhang, K. Electrochemical properties of PEDOT: PSS/V2O5 hybrid fiber based supercapacitors. J. Phys. Chem. Solids. 2019, 129, 234-41.
140. Zheng, X.; Zhang, S.; Zhou, M.; et al. MXene functionalized, highly breathable and sensitive pressure sensors with multi‐layered porous structure. Adv. Funct. Mater. 2023, 33, 2214880.
141. Zheng, X.; Zhou, D.; Liu, Z.; et al. Skin-inspired textile electronics enable ultrasensitive pressure sensing. Small 2024, 20, e2310032.
142. Zheng, X. Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors. J. Alloys. Compd. 2022, 899, 163275.
143. Zheng, X.; Wang, Y.; Nie, W.; et al. Elastic polyaniline nanoarrays/MXene textiles for all-solid-state supercapacitors and anisotropic strain sensors. Compos. Part. A. Appl. Sci. Manuf. 2022, 158, 106985.
144. Li, Y.; Cao, W.; Liu, Z.; Zhang, Y.; Chen, Z.; Zheng, X. A personalized electronic textile for ultrasensitive pressure sensing enabled by biocompatible MXene/PEDOT:PSS composite. Carbon. Energy. 2024, 6, e530.
145. Zheng, X.; Shen, J.; Hu, Q.; et al. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale 2021, 13, 1832-41.
146. Zheng, X.; Wang, P.; Ding, B.; et al. Coaxial-helix MXene/PANI-based core-spun yarn towards strain-insensitive conductor and supercapacitor. Mater. Today. Commun. 2023, 36, 106788.
147. Ding, B.; Yao, L.; Tang, J.; Li, C.; Zheng, X. Screen-printed MXene-based all-solid-state textile supercapacitors. Mater. Today. Commun. 2024, 38, 108170.
148. Zheng, X.; Cao, W.; Hong, X.; et al. Versatile electronic textile enabled by a mixed-dimensional assembly strategy. Small 2023, 19, e2208134.
149. Zhang, J.; Seyedin, S.; Qin, S.; et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, e1804732.
150. Levitt, A. S.; Alhabeb, M.; Hatter, C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A. 2019, 7, 269-77.
151. Qin, L.; Jiang, J.; Hou, L.; Zhang, F.; Rosen, J. MXene-based multifunctional smart fibers for wearable and portable electronics. J. Mater. Chem. A. 2022, 10, 12544-50.
152. Tang, J.; Zheng, X.; Ding, B.; et al. MXene/PANI composite fiber-based asymmetric supercapacitors for self-powered energy storage system. Mater. Letters. 2024, 355, 135494.
153. Shirvan A, Nouri A, Sutti A. A perspective on the wet spinning process and its advancements in biomedical sciences. Eur. Polymer. J. 2022, 181, 111681.
154. Bhardwaj, N.; Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325-47.
155. Aranishi, Y.; Nishio, Y. Cellulosic fiber produced by melt spinning. In: Blends and Graft Copolymers of Cellulosics. Cham: Springer International Publishing; 2017. pp. 109-25.
156. Lu, W.; Deng, Q.; Liu, M.; Ding, B.; Xiong, Z.; Qiu, L. Coaxial wet spinning of boron nitride nanosheet-based composite fibers with enhanced thermal conductivity and mechanical strength. Nano-Micro. Lett. 2023, 16, 25.
157. Sarabia-riquelme, R.; Noble, L. E.; Alarcon, E. P.; et al. Highly conductive n-type polymer fibers from the wet-spinning of n-doped PBDF and their application in thermoelectric textiles. Adv. Funct. Mater. 2024, 34, 2311379.
158. Bi, S.; Li, L.; Dong, Y.; Peng, R.; He, C.; Yang, Y. Scalable wet-spinning approach to fabricate polydimethylsiloxane composite fibers for tunable photomechanical actuators. Sens. Actuators. B. Chem. 2024, 413, 135857.
159. Park, C.; Kim, D. W.; Ryu, S.; et al. Wet-spinning of reduced graphene oxide composite fiber by mechanical synergistic effect with graphene scrolling method. Mater. Today. Adv. 2024, 22, 100491.
160. Eom, W.; Shin, H.; Ambade, R. B.; et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 2020, 11, 2825.
161. Zhang, H.; Luo, Y.; Zhou, J.; et al. One-step wet-spinning of high-energy density coaxial fibrous supercapacitors based on in situ carbon-modified nitrogen-doped MXene nanosheets. Nano. Lett. 2024, 24, 10131-8.
162. Wang, P.; Zeng, H.; Zhu, J.; Gao, Q. Micro-supercapacitors based on ultra-fine PEDOT: PSS fibers prepared via wet-spinning. Chem. Eng. J. 2024, 484, 149676.
163. Yang, Z.; Zhao, W.; Niu, Y.; et al. Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 2018, 132, 241-8.
164. Zhang, Z.; Kong, Y.; Gao, J.; et al. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. Nanoscale 2024, 16, 6383-401.
165. Liu, X.; Naylor, M. M.; Cooper, S. J.; et al. Flexible all-fiber electrospun supercapacitor. J. Power. Sources. 2018, 384, 264-9.
166. Bai, C.; Wang, Y.; Fan, Z.; Yan, L.; Jiao, H. One-step preparation of gel-electrolyte-friendly fiber-shaped aerogel current collector for solid-state fiber-shaped supercapacitors with large capacity. J. Power. Sources. 2022, 521, 230971.
167. Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination 2015, 356, 15-30.
168. Kannan, B.; Cha, H.; Hosie, I. C. Electrospinning-commercial applications, challenges and opportunities. In: Fakirov S, editor. Nano-size Polymers. Cham: Springer International Publishing; 2016. pp. 309-42.
169. Sun, J.; Huang, Y.; Fu, C.; et al. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano. Energy. 2016, 27, 230-7.
170. Zhao, J.; Zhang, Y.; Huang, Y.; et al. 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv. Sci. 2018, 5, 1801114.
171. Zhao, J.; Lu, H.; Zhang, Y.; et al. Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 2021, 7.
172. Lima, M. D.; Fang, S.; Lepró, X.; et al. Biscrolling nanotube sheets and functional guests into yarns. Science 2011, 331, 51-5.
173. Cruz-Silva, R.; Morelos-Gomez, A.; Kim, H. I.; et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS. Nano. 2014, 8, 5959-67.
174. Choi, C.; Kim, K. M.; Kim, K. J.; et al. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 2016, 7, 13811.
175. Zhu, C.; Geng, F. Macroscopic MXene ribbon with oriented sheet stacking for high-performance flexible supercapacitors. Carbon. Energy. 2021, 3, 142-52.
176. Yang, D.; Ni, W.; Cheng, J.; et al. Omnidirectional porous fiber scrolls of polyaniline nanopillars array-N-doped carbon nanofibers for fiber-shaped supercapacitors. Mater. Today. Energy. 2017, 5, 196-204.
177. Chen, Q.; Meng, Y.; Hu, C.; et al. MnO2 -modified hierarchical graphene fiber electrochemical supercapacitor. J. Power. Sources. 2014, 247, 32-9.
178. Zhao, H.; Yang, B.; Zhou, M.; et al. Pulse-potential electrochemical fabrication of coaxial-nanostructured polypyrrole/multiwall carbon nanotubes networks on cotton fabrics as stable flexible supercapacitor electrodes with high areal capacitance. Cellulose 2019, 26, 4071-84.
179. Yadlapalli, R. T.; Alla, R. R.; Kandipati, R.; Kotapati, A. Super capacitors for energy storage: progress, applications and challenges. J. Energy. Storage. 2022, 49, 104194.
180. Hou, Z.; Liu, X.; Tian, M.; et al. Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. J. Mater. Chem. A. 2023, 11, 17336-72.
181. Wang, Z.; Qin, S.; Seyedin, S.; et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018, 14, e1802225.
182. Wen, Z.; Yeh, M. H.; Guo, H.; et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.
183. Choi, C.; Lee, J. M.; Kim, S. H.; Kim, S. J.; Di, J.; Baughman, R. H. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano. Lett. 2016, 16, 7677-84.
184. Pan, Z.; Yang, J.; Li, L.; et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy. Storage. Mater. 2020, 25, 124-30.
185. Tao, R.; Mao, Y.; Gu, C.; Hu, W. Integrating all-yarn-based triboelectric nanogenerator/supercapacitor for energy harvesting, storage and sensing. Chem. Eng. J. 2024, 496, 154358.
186. Xu, M.; Mao, Y.; Hu, W. All-hydrogel yarn-based supercapacitor wrapped with multifunctional cotton fiber for energy storage and sensing. Nano. Energy. 2024, 130, 110142.
187. Chen, M.; Ma, Y.; Li, Y.; Wu, D.; Zhang, Y.; Youn, C. Wearable 2.0: enabling human-cloud integration in next generation healthcare systems. IEEE. Commun. Mag. 2017, 55, 54-61.
188. Chen, L.; Gong, R.; Ge, D.; Yang, L.; Hu, Z.; Yu, H. Y. Stiff gel-protected fiber-shaped supercapacitors based on CNFA/silk composite fiber with superhigh interference-resistant ability as self-powered temperature sensor. Int. J. Biol. Macromol. 2024, 278, 134604.
189. Xiao, G.; Ju, J.; Li, M.; et al. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens. Bioelectron. 2023, 235, 115389.
190. Wang, H.; Liu, Z.; Ding, J.; et al. Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 2016, 28, 4998-5007.
191. Gao, Z.; Zhou, Y.; Zhang, J.; et al. Advanced energy harvesters and energy storage for powering wearable and implantable medical devices. Adv. Mater. 2024, 36, e2404492.
192. Rita, A. A.; Misra, S.; Ahuja, R.; Oluranti, J. Effect of supercapacitor on power supply for rechargeable implanted medical devices. In: Singh PK, Singh Y, Kolekar MH, Kar AK, Chhabra JK, Sen A, editors. Recent Innovations in Computing. Singapore: Springer; 2021. pp. 123-34.
193. Dong, L.; Closson, A. B.; Jin, C.; et al. Multifunctional pacemaker lead for cardiac energy harvesting and pressure sensing. Adv. Healthc. Mater. 2020, 9, e2000053.
194. Sim, H. J.; Choi, C.; Lee, D. Y.; et al. Biomolecule based fiber supercapacitor for implantable device. Nano. Energy. 2018, 47, 385-92.
195. Yu, M.; Peng, Y.; Wang, X.; Ran, F. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 2023, 33, 2301877.
196. Chodankar, N. R.; Karekar, S. V.; Safarkhani, M.; et al. Revolutionizing implantable technology: biocompatible supercapacitors as the future of power sources. Adv. Funct. Materials. 2024, 34, 2406819.
197. Gao, C.; Liu, J.; Han, Y.; et al. An energy-adjustable, deformable, and packable wireless charging fiber supercapacitor. Adv. Mater. 2024, 36, e2413292.
198. Oyedotun, K. O.; Mamba, B. B. New trends in supercapacitors applications. Inorg. Chem. Commun. 2024, 170, 113154.
199. Shang, C.; Fu, L.; Xiao, H.; Lin, Y. Online regulation control of pulsed power loads via supercapacitor with deep reinforcement learning utilizing a long short-term memory network and attention mechanism. J. Energy. Storage. 2024, 102, 114080.
200. Obeidat, A. M.; Rastogi, A. Co-electrodeposited poly (3, 4-ethylenedioxythiophene) (PEDOT)-multiwall carbon nanotubes (MWCNT) hybrid electrodes based solid-state supercapacitors using ionic liquid gel electrolyte for energy storage with pulsed power capabilities. J. Energy. Storage. 2023, 67, 107563.
201. Zhijun, C.; Keting, Z.; Yongqiang, Y.; et al. Ta2O5-graphene schottky heterojunction composite symmetric supercapacitor with ultrahigh energy density for self-powered pulse sensor driven by green long afterglow phosphor-enhanced solar cell. Appl. Surf. Sci. 2022, 605, 154730.
202. Chai, Z.; Zhang, N.; Sun, P.; et al. Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS. Nano. 2016, 10, 9201-7.
203. Ma, W.; Zhang, Y.; Pan, S.; et al. Smart fibers for energy conversion and storage. Chem. Soc. Rev. 2021, 50, 7009-61.
205. Gunawan, W. H.; Marin, J. M.; Rjeb, A.; et al. Energy harvesting over fiber from amplified spontaneous emission in optical sensing and communication systems. J. Lightwave. Technol. 2024, 42, 6511-21.
206. Na, Y. W.; Cheon, J. Y.; Kim, J. H.; et al. All-in-one flexible supercapacitor with ultrastable performance under extreme load. Sci. Adv. 2022, 8, eabl8631.
207. Wang, Z.; Cheng, J.; Zhou, J.; et al. All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano. Energy. 2018, 50, 106-17.
208. Khudiyev, T.; Lee, J. T.; Cox, J. R.; et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 2020, 32, e2004971.
209. Tao, X.; Liao, S.; Wang, Y. Polymer-assisted fully recyclable flexible sensors. EcoMat 2021, 3, e12083.
210. Zhao, J.; Geng, Z.; Wang, S.; Xu, Z.; Wang, Q.; Zhang, D. Recyclable carbon nanotube/thiol-ended hyperbranched polymer nanocomposite: implication for flexible wearable devices. ACS. Appl. Nano. Mater. 2024, 7, 12334-44.
211. Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Fundamentals of MXene synthesis. Nat. Synth. 2022, 1, 601-14.