REFERENCES

1. Xu, M.; Zhu, X.; Lai, Y.; et al. Production of hierarchical porous biocarbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor. Appl. Energy. 2024, 353, 122095.

2. Yang, J.; Su, F.; Liu, T.; Zheng, X. Heteroatoms co-doped multi-level porous carbon as electrode material for supercapacitors with ultra-long cycle life and high energy density. Diamond. Relat. Mater. 2024, 141, 110693.

3. Sriram, G.; Hegde, G.; Dhanabalan, K.; et al. Recent trends in hierarchical electrode materials in supercapacitor: synthesis, electrochemical measurements, performance and their charge-storage mechanism. J. Energy. Storage. 2024, 94, 112454.

4. Sharma K, Arora A, Tripathi S. Review of supercapacitors: materials and devices. J. Energy. Storage. 2019, 21, 801-25.

5. Mansuer, M.; Miao, L.; Qin, Y.; et al. Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chinese. Chem. Lett. 2023, 34, 107304.

6. Guo, Z.; Han, X.; Zhang, C.; et al. Activation of biomass-derived porous carbon for supercapacitors: a review. Chinese. Chem. Lett. 2024, 35, 109007.

7. Jiang, G.; Senthil, R. A.; Sun, Y.; Kumar, T. R.; Pan, J. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors. J. Power. Sources. 2022, 520, 230886.

8. Da, S. L. M.; Cesar, R.; Moreira, C. M.; et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy. Storage. Mater. 2020, 27, 555-90.

9. Yang, N.; Ji, L.; Fu, H.; et al. Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors. Chinese. Chem. Lett. 2022, 33, 3961-7.

10. Dong, K.; Sun, Z.; Jing, G.; et al. Nanoarchitectonics of self-supporting porous carbon electrode with heteroatoms co-doped: for high-performance supercapacitors. J. Energy. Storage. 2024, 85, 111048.

11. Li, H.; Li, Y.; Li, Y.; et al. Facile synthesis of heteroatom-doped hierarchical porous carbon with small mesopores for high-performance supercapacitors. J. Energy. Storage. 2024, 77, 110000.

12. Yuan, C.; Xu, H.; A. El-khodary S, et al. Recent advances and challenges in biomass-derived carbon materials for supercapacitors: a review. Fuel 2024, 362, 130795.

13. Zhang, R.; Liu, H.; Cui, Z.; Zhang, Y.; Wang, Y. Oxygen-rich microporous carbon derived from humic acid extracted from lignite for high-performance supercapacitors. Fuel 2024, 364, 131062.

14. Liu, H.; Wang, Y.; Lv, L.; Liu, X.; Wang, Z.; Liu, J. Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors. Energy 2023, 269, 126707.

15. Peng, Y.; Chen, Z.; Zhang, R.; et al. Oxygen-containing functional groups regulating the carbon/electrolyte interfacial properties toward enhanced K+ storage. Nanomicro. Lett. 2021, 13, 192.

16. Chen, G.; Liu, Z.; Yang, G.; et al. Synthesis of chain-like nitrogen-doped carbon for high-performance supercapacitors. Colloids. Surf. A:. Physicochem. Eng. Asp. 2024, 687, 133498.

17. Hajibaba, S.; Gholipour, S.; Pourjafarabadi, M.; et al. Electrochemical sulfur-doping as an efficient method for capacitance enhancement in carbon-based supercapacitors. J. Energy. Storage. 2024, 79, 110044.

18. Suman, S.; Ficek, M.; Sankaran, K. J.; et al. Nitrogen-incorporated boron-doped diamond films for enhanced electrochemical supercapacitor performance. Energy 2024, 294, 130914.

19. Kim, D.; Jin, X.; Cho, Y.; et al. Facile preparation of N-doped porous carbon nanosheets derived from potassium citrate/melamine for high-performance supercapacitors. J. Electroanal. Chem. 2021, 892, 115302.

20. Liu, A.; Yan, L.; Zhang, Y.; et al. Nitrogen-doped coal-based microporous carbon material co-activated by HCOOK and urea for high performance supercapacitors. Surf. Interfaces. 2024, 44, 103754.

21. Farma, R.; Apriyani, I.; Awitdrus; et al. Enhanced electrochemical performance of oxygen, nitrogen, and sulfur trial-doped Nypa fruticans-based carbon nanofiber for high performance supercapacitors. J. Energy. Storage. 2023, 67, 107611.

22. Zhang, G.; Zhang, Y.; Wang, J.; et al. Nitrogen-functionalization of carbon materials for supercapacitor: Combining with nanostructure directly is superior to doping amorphous element. J. Colloid. Interface. Sci. 2024, 660, 478-89.

23. Hou, L.; Yang, W.; Li, Y.; et al. Dual-template endowing N, O co-doped hierarchically porous carbon from potassium citrate with high capacitance and rate capability for supercapacitors. Chem. Eng. J. 2021, 417, 129289.

24. Cai, L.; Zhang, Y.; Ma, R.; et al. Nitrogen-doped hierarchical porous carbon derived from coal for high-performance supercapacitor. Molecules 2023, 28, 3660.

25. Zahra, T.; Gassoumi, A.; Gouadria, S.; et al. Facile fabrication of BiFeO3/g-C3N4 nanohybrid as efficient electrode materials for supercapacitor application. Diamond. Relate. Mater. 2024, 144, 110927.

26. Yang, K.; Fan, Q.; Song, C.; et al. Enhanced functional properties of porous carbon materials as high-performance electrode materials for supercapacitors. Green. Energy. Resour. 2023, 1, 100030.

27. Kolavada, H.; Gajjar, P.; Gupta, S. K. Unraveling quantum capacitance in supercapacitors: energy storage applications. J. Energy. Storage. 2024, 81, 110354.

28. Shah, S. S.; Aziz, M. A.; Ali, M.; Hakeem, A. S.; Yamani, Z. H. Advanced high-energy all-solid-state hybrid supercapacitor with nickel-cobalt-layered double hydroxide nanoflowers supported on jute stick-derived activated carbon nanosheets. Small 2024, 20, e2306665.

29. Reddy, B.; Narayana, P.; Maurya, A.; et al. Modeling capacitance of carbon-based supercapacitors by artificial neural networks. J. Energy. Storage. 2023, 72, 108537.

30. Liu, P.; Wen, Y.; Huang, L.; et al. An emerging machine learning strategy for the assisted‐design of high-performance supercapacitor materials by mining the relationship between capacitance and structural features of porous carbon. J. Electroanal. Chem. 2021, 899, 115684.

31. Rahimi, M.; Abbaspour-fard, M. H.; Rohani, A. Synergetic effect of N/O functional groups and microstructures of activated carbon on supercapacitor performance by machine learning. J. Power. Sources. 2022, 521, 230968.

32. Saad, A. G.; Emad-eldeen, A.; Tawfik, W. Z.; El-deen, A. G. Data-driven machine learning approach for predicting the capacitance of graphene-based supercapacitor electrodes. J. Energy. Storage. 2022, 55, 105411.

33. Krishnan, A.; Yoosuf, M.; Archana, K.; A. s. A, Viswam A. Metal derivative (MD)/g-C3N4 association in hydrogen production: a study on the fascinating chemistry behind, current trend and future direction. J. Energy. Chem. 2023, 80, 562-83.

34. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.

35. Jha, S.; Yen, M.; Salinas, Y. S.; Palmer, E.; Villafuerte, J.; Liang, H. Machine learning-assisted materials development and device management in batteries and supercapacitors: performance comparison and challenges. J. Mater. Chem. A. 2023, 11, 3904-36.

36. Qiu, C.; Jiang, L.; Gao, Y.; Sheng, L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater. Des. 2023, 230, 111952.

37. Thi, Q. H.; Man, P.; Huang, L.; Chen, X.; Zhao, J.; Ly, T. H. Superhydrophilic 2D carbon nitrides prepared by direct chemical vapor deposition. Small. Sci. 2023, 3, 2200099.

38. Yang, H.; Lin, H.; Yang, C.; et al. Structural regulation of carbon materials through hydrothermal mixing of biomass and its application in supercapacitors. J. Energy. Storage. 2024, 83, 110688.

39. Yang, B.; Zhang, D.; Li, Y.; et al. Locally graphitized biomass-derived porous carbon nanosheets with encapsulated Fe3O4 nanoparticles for supercapacitor applications. Chem. Eng. J. 2024, 479, 147662.

40. Ran, F.; Yang, X.; Xu, X.; Li, S.; Liu, Y.; Shao, L. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor. Chem. Eng. J. 2021, 412, 128673.

41. Liu, Z.; Qin, A.; Zhang, K.; Lian, P.; Yin, X.; Tan, H. Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application. Nano. Energy. 2021, 90, 106540.

42. Raha, H.; Pradhan, D.; Guha, P. K. Ultrahigh coulombic efficiency in alkali metal incorporated biomass derived carbon electrode. J. Electroanal. Chem. 2023, 931, 117193.

43. Song, Z.; Li, L.; Zhu, D.; et al. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. J. Mater. Chem. A. 2019, 7, 816-26.

44. Le, F.; Ren, P.; Jia, W.; Wang, T.; Tao, Y.; Wu, D. High-yield preparation of coal tar pitch based porous carbon via low melting point fire retardant carbonation strategy for supercapacitor. Chem. Eng. J. 2023, 470, 144131.

45. Yang, Y.; Zuo, P.; Qu, S. Adjusting hydrophily and aromaticity strategy for pitch-based hierarchical porous carbon and its application in flexible supercapacitor. Fuel 2022, 311, 122514.

46. Zhang, H.; Sun, X.; Zheng, Y.; Zhou, J. Scalable synthesis of N, O co-doped hierarchical porous carbon for high energy density supercapacitors. J. Colloid. Interface. Sci. 2024, 658, 1025-34.

47. Li, W.; Li, C.; Xu, Y.; et al. Heteroatom-doped and graphitization-enhanced lignin-derived hierarchically porous carbon via facile assembly of lignin-Fe coordination for high-voltage symmetric supercapacitors. J. Colloid. Interface. Sci. 2024, 659, 374-84.

48. Zhang, Y.; Zheng, H.; Wang, Q.; et al. 3-Dimensional porous carbon derived from waste aucklandia lappa straw for high-performance liquid and all-solid-state supercapacitors. J. Electroanal. Chem. 2024, 953, 117992.

49. Zheng, L.; Dai, X.; Ouyang, Y.; Chen, Y.; Wang, X. nHighly N/O co-doped carbon nanospheres for symmetric supercapacitors application with high specific energy. J. Energy. Storage. 2021, 33, 102152.

50. Ma, T.; Xu, S.; Zhu, M. Porous carbon from verbena straw with self-doped O/N and its high-performance aqueous and flexible all-solid-state supercapacitors. J. Power. Sources. 2024, 597, 234147.

51. Shaku, B.; Mofokeng, T.; Coville, N.; Ozoemena, K.; Maubane-nkadimeng, M. Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors. Electrochim. Acta. 2023, 442, 141828.

52. Feng, L.; Wang, M.; Chang, Y.; et al. Polymerization-Pyrolysis-Derived Hierarchical Nitrogen-Doped Porous Carbon for Energetic Capacitive Energy Storage. ACS. Appl. Energy. Mater. 2023, 6, 7147-55.

53. Wang, T.; Guo, J.; Guo, Y.; Feng, J.; Wu, D. Nitrogen-Doped Carbon Derived from Deep Eutectic Solvent as a High-Performance Supercapacitor. ACS. Appl. Energy. Mater. 2021, 4, 2190-200.

54. Dong, D.; Zhang, Y.; Xiao, Y.; Wang, T.; Wang, J.; Gao, W. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes. Fuel 2022, 309, 122168.

55. Zhang, Z.; Li, Y.; Yang, X.; et al. In-situ confined construction of N-doped compact bamboo charcoal composites for supercapacitors. J. Energy. Storage. 2023, 62, 106954.

56. Park, S.; Seo, B.; Shin, D.; Kim, K.; Choi, W. Sodium-chloride-assisted synthesis of nitrogen-doped porous carbon shells via one-step combustion waves for supercapacitor electrodes. Chem. Eng. J. 2022, 433, 134486.

57. Li, G.; Chen, S.; Wang, Y.; Wang, G.; Wu, Y.; Xu, Y. N, S co-doped porous graphene-like carbon synthesized by a facile coal tar pitch-blowing strategy for high-performance supercapacitors. Chem. Phys. Lett. 2023, 827, 140712.

58. Yang, X.; Sun, G.; Wang, F.; et al. Rational design of dense microporous carbon derived from coal tar pitch towards high mass loading supercapacitors. J. Colloid. Interface. Sci. 2023, 646, 228-37.

59. Dong, D.; Zhang, Y.; Xiao, Y.; et al. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials. J. Colloid. Interface. Sci. 2020, 580, 77-87.

60. Dong, D.; Xiao, Y.; Xing, J. Facile wet mechanochemistry coupled K2FeO4 activation to prepare functional coal-derived hierarchical porous carbon for supercapacitors. J. Cleaner. Prod. 2023, 428, 139474.

61. Zhang, R.; Jing, X.; Chu, Y.; et al. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A. 2018, 6, 17730-9.

62. Yadav, N.; Singh, M. K.; Yadav, N.; Hashmi, S. High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon. J. Power. Sources. 2018, 402, 133-46.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/