REFERENCES

1. Lee S, Manthiram A. Can cobalt be eliminated from lithium-ion batteries? ACS Energy Lett 2022;7:3058-63.

2. Yu L, Liu T, Amine R, Wen J, Lu J, Amine K. High nickel and no cobalt - the pursuit of next-generation layered oxide cathodes. ACS Appl Mater Interfaces 2022;14:23056-65.

3. Kim Y, Seong WM, Manthiram A. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: progress, challenges, and perspectives. Energy Stor Mater 2021;34:250-9.

4. Li H, Wang L, Song Y, et al. Understanding the insight mechanism of chemical-mechanical degradation of layered Co-free Ni-rich cathode materials: a review. Small 2023;19:e2302208.

5. Li W, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 2020;5:26-34.

6. Deng T, Fan X, Cao L, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 2019;3:2550-64.

7. Sun YK, Lee DJ, Lee YJ, Chen Z, Myung ST. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 2013;5:11434-40.

8. Li W, Lee S, Manthiram A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater 2020;32:e2002718.

9. Park G, Namkoong B, Kim S, Liu J, Yoon CS, Sun Y. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat Energy 2022;7:946-54.

10. Park N, Kim S, Kim M, et al. Mechanism of doping with high-valence elements for developing Ni-rich cathode materials. Adv Energy Mater 2023;13:2301530.

11. Yoon CS, Jun D, Myung S, Sun Y. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett 2017;2:1150-5.

12. Kim Y, Kim H, Manthiram A. A kinetic study on cobalt-free high-nickel layered oxide cathode materials for practical lithium-ion batteries. J Power Sources 2023;558:232633.

13. Mesnier A, Manthiram A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces 2020;12:52826-35.

14. Wang X, Zhang B, Xiao Z, et al. Enhanced rate capability and mitigated capacity decay of ultrahigh-nickel cobalt-free LiNi0.9Mn0.1O2 cathode at high-voltage by selective tungsten substitution. Chin Chem Lett 2023;34:107772.

15. Kim JM, Xu Y, Engelhard MH, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries. ACS Appl Mater Interfaces 2022;14:17405-14.

16. Yi M, Dolocan A, Manthiram A. Stabilizing the interphase in cobalt-free, ultrahigh-nickel cathodes for lithium-ion batteries. Adv Funct Mater 2023;33:2213164.

17. Ryu H, Park G, Yoon CS, Sun Y. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J Mater Chem A 2019;7:18580-8.

18. Zhang Y, Li H, Liu J, Liu J, Ma H, Cheng F. Enhancing LiNiO2 cathode materials by concentration-gradient yttrium modification for rechargeable lithium-ion batteries. J Energy Chem 2021;63:312-9.

19. Yoon CS, Kim U, Park G, et al. Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. ACS Energy Lett 2018;3:1634-9.

20. Luo Y, Wei H, Tang L, et al. Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Stor Mater 2022;50:274-307.

21. Wang T, Yang J, Wang H, et al. Promoting reversibility of Co-free layered cathodes by Al and cation vacancy. Adv Energy Mater 2023;13:2204241.

22. Seong WM, Manthiram A. Complementary effects of Mg and Cu incorporation in stabilizing the cobalt-free LiNiO2 cathode for lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:43653-64.

23. Cui Z, Guo Z, Manthiram A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries. Adv Energy Mater 2023;13:2203853.

24. Divakaran AM, Minakshi M, Bahri PA, et al. Rational design on materials for developing next generation lithium-ion secondary battery. Prog Solid State Chem 2021;62:100298.

25. Li M, Lu J. Cobalt in lithium-ion batteries. Science 2020;367:979-80.

26. Zheng J, Teng G, Xin C, et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2. J Phys Chem Lett 2017;8:5537-42.

27. Li H, Cormier M, Zhang N, Inglis J, Li J, Dahn JR. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc 2019;166:A429-39.

28. Liu T, Yu L, Liu J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy 2021;6:277-86.

29. Tian R, Yin S, Zhang H, Song D, Ma Y, Zhang L. Influence of Al doping on the structure and electrochemical performance of the Co-free LiNi0.8Mn0.2O2 cathode material. Dalton Trans 2023;52:11716-24.

30. Shen L, Du F, Zhou Q, et al. Cobalt-free nickel-rich cathode materials based on Al/Mg co-doping of LiNiO2 for lithium ion battery. J Colloid Interface Sci 2023;638:281-90.

31. Park G, Sun HH, Noh T, et al. Nanostructured Co-free layered oxide cathode that affords fast-charging lithium-ion batteries for electric vehicles. Adv Energy Mater 2022;12:2202719.

32. Zhong Q, von Sacken U. Crystal structures and electrochemical properties of LiAlyNi1-yO2 solid solution. J Power Sources 1995;54:221-3.

33. Nishida Y, Nakane K, Satoh T. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries. J Power Sources 1997;68:561-4.

34. Lin S, Fung K, Hon Y, Hon M. Crystallization kinetics and mechanism of the LixNi2-xO2 (0 < x ≤ 1) from Li2CO3 and NiO. J Crystal Growth 2002;234:176-83.

35. Croguennec L, Suard E, Willmann P, Delmas C. Structural and electrochemical characterization of the LiNi1-yTiyO2 electrode materials obtained by direct solid-state reactions. Chem Mater 2002;14:2149-57.

36. Kong X, Li D, Fedorovskaya EO, Kallio T, Ren X. New insights in Al-doping effects on the LiNiO2 positive electrode material by a sol-gel method. Int J Energy Res 2021;45:10489-99.

37. van Bommel A, Dahn JR. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem Mater 2009;21:1500-3.

38. Kong X, Li D, Lahtinen K, Kallio T, Ren X. Effect of copper-doping on LiNiO2 positive electrode for lithium-ion batteries. J Electrochem Soc 2020;167:140545.

39. Ji H, Ben L, Yu H, Qiao R, Zhao W, Huang X. Electrolyzed Ni(OH)2 precursor sintered with LiOH/LiNiO3 mixed salt for structurally and electrochemically stable cobalt-free LiNiO2 cathode materials. ACS Appl Mater Interfaces 2021;13:50965-74.

40. Essehli R, Parejiya A, Muralidharan N, et al. Hydrothermal synthesis of Co-free NMA cathodes for high performance Li-ion batteries. J Power Sources 2022;545:231938.

41. Cui Z, Xie Q, Manthiram A. A cobalt- and manganese-free high-nickel layered oxide cathode for long-life, safer lithium-ion batteries. Adv Energy Mater 2021;11:2102421.

42. Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. ACC Chem Res 2019;52:2201-9.

43. Tan X, Peng W, Luo G, et al. Chemical and structural evolution during solid-state synthesis of cobalt-free nickel-rich layered oxide cathode. Mater Today Energy 2022;29:101114.

44. Yu L, Zhao H, Sun J, Han Q, Zhu J, Lu J. Insights into micromorphological effects of cation disordering on Co-free layered oxide cathodes. Adv Funct Mater 2022;32:2204931.

45. Su L, Jarvis K, Charalambous H, Dolocan A, Manthiram A. Stabilizing high-nickel cathodes with high-voltage electrolytes. Adv Funct Mater 2023;33:2213675.

46. Cui Z, Manthiram A. Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries. Angew Chem Int Ed 2023;62:e202307243.

47. Rougier A, Saadoune I, Gravereau P, Willmann P, Delmasa C. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials. Solid State Ion 1996;90:83-90.

48. Wei H, Tang L, Huang Y, et al. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater Today 2021;51:365-92.

49. Kanamori J. Superexchange interaction and symmetry properties of electron orbitals. J Phys Chem Solids 1959;10:87-98.

50. Xiao Y, Liu T, Liu J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy 2018;49:77-85.

51. Wang D, Xin C, Zhang M, et al. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem Mater 2019;31:2731-40.

52. Kim Y, Kim D, Kang S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem Mater 2011;23:5388-97.

53. Reed J, Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev 2004;104:4513-33.

54. Yu H, Qian Y, Otani M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ Sci 2014;7:1068-78.

55. Wang C, Han L, Zhang R, et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 2021;4:2013-26.

56. Ahmed S, Bianchini M, Pokle A, et al. Visualization of light elements using 4D STEM: the layered-to-rock salt phase transition in LiNiO2 cathode material. Adv Energy Mater 2020;10:2001026.

57. Cheng J, Ouyang B, Persson KA. Mitigating the High-charge detrimental phase transformation in LiNiO2 using doping engineering. ACS Energy Lett 2023;8:2401-7.

58. Kong F, Liang C, Wang L, et al. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2-based cathode materials. Adv Energy Mater 2019;9:1802586.

59. Wang L, Maxisch T, Ceder G. A First-principles approach to studying the thermal stability of oxide cathode materials. Chem Mater 2007;19:543-52.

60. Li L, Yu J, Darbar D, et al. Atomic-scale mechanisms of enhanced electrochemical properties of Mo-doped Co-free layered oxide cathodes for lithium-ion batteries. ACS Energy Lett 2019;4:2540-6.

61. Li H, Hua W, Liu-théato X, et al. New insights into lithium hopping and ordering in LiNiO2 cathodes during Li (De)intercalation. Chem Mater 2021;33:9546-59.

62. Ikeda N, Konuma I, Rajendra HB, Aida T, Yabuuchi N. Why is the O3 to O1 phase transition hindered in LiNiO2 on full delithiation? J Mater Chem A 2021;9:15963-7.

63. de Biasi L, Schiele A, Roca-Ayats M, et al. Phase transformation behavior and stability of LiNiO2 cathode material for Li-ion batteries obtained from in situ gas analysis and operando X-Ray diffraction. ChemSusChem 2019;12:2240-50.

64. Zhang SS. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor Mater 2020;24:247-54.

65. Bi Y, Li Q, Yi R, Xiao J. To pave the way for large-scale electrode processing of moisture-sensitive Ni-rich cathodes. J Electrochem Soc 2022;169:020521.

66. Marchand-brynaert J, Jongen N, Dewez J. Surface hydroxylation of poly(vinylidene fluoride) (PVDF) film. J Polym Sci A Polym Chem 1997;35:1227-35.

67. Dai P, Kong X, Yang H, Li J, Zeng J, Zhao J. Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of Co-free cathodes for lithium-ion batteries. ACS Sustain Chem Eng 2022;10:4381-90.

68. Kaneda H, Furuichi Y, Ikezawa A, Arai H. Single-crystal-like durable LiNiO2 positive electrode materials for lithium-ion batteries. ACS Appl Mater Interfaces 2022;14:52766-78.

69. Luu NS, Meza PE, Tayamen AM, et al. Enabling ambient stability of LiNiO2 lithium-ion battery cathode materials via graphene-cellulose composite coatings. Chem Mater 2023;35:5150-9.

70. Ober S, Mesnier A, Manthiram A. Surface stabilization of cobalt-free LiNiO2 with niobium for lithium-ion batteries. ACS Appl Mater Interfaces 2023;15:1442-51.

71. Kim Y, Kim H, Shin W, Jo E, Manthiram A. Insights into the microstructural engineering of cobalt-free, high-nickel cathodes based on surface energy for lithium-ion batteries. Adv Energy Mater 2023;13:2204054.

72. Mu L, Kan WH, Kuai C, et al. Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl Mater Interfaces 2020;12:12874-82.

73. Chu Y, Zhou J, Liu W, Chu F, Li J, Wu F. Cobalt-free LiNiO2 with a selenium coating as a high-energy layered cathode material for lithium-ion batteries. Small Sci 2023;3:2300023.

74. Zaker N, Geng C, Rathore D, et al. Probing the mysterious behavior of tungsten as a dopant inside pristine cobalt-free nickel-rich cathode materials. Adv Funct Mater 2023;33:2211178.

75. Liu L, Zhao Y, Jiang G, et al. Dual-site lattice co-doping strategy regulated crystal-structure and microstructure for enhanced cycling stability of Co-free Ni-rich layered cathode. Nano Res 2023;16:9250-8.

76. Hu C, Ma J, Li A, et al. Structural reinforcement through high-valence Nb doping to boost the cycling stability of Co-free and Ni-rich LiNi0.9Mn0.1O2 cathode materials. Energy Fuels 2023;37:8005-13.

77. Cao H, Du F, Adkins J, et al. Al-doping induced superior lithium ion storage capability of LiNiO2 spheres. Ceram Int 2020;46:20050-60.

78. Xu T, Du F, Wu L, Fan Z, Shen L, Zheng J. Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism. Electrochim Acta 2022;417:140345.

79. Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, Shul Y. Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. J Power Sources 2007;171:922-7.

80. Geng C, Rathore D, Heino D, et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials. Adv Energy Mater 2022;12:2103067.

81. Yang Z, Mu L, Hou D, et al. Probing dopant redistribution, phase propagation, and local chemical changes in the synthesis of layered oxide battery cathodes. Adv Energy Mater 2021;11:2002719.

82. Hua W, Zhang J, Wang S, et al. Long-range cationic disordering induces two distinct degradation pathways in Co-free Ni-rich layered cathodes. Angew Chem Int Ed 2023;62:e202214880.

83. Mu L, Yang Z, Tao L, et al. The sensitive surface chemistry of Co-free, Ni-rich layered oxides: identifying experimental conditions that influence characterization results. J Mater Chem A 2020;8:17487-97.

84. Kong F, Liang C, Longo RC, et al. Conflicting roles of anion doping on the electrochemical performance of Li-ion battery cathode materials. Chem Mater 2016;28:6942-52.

85. Pouillerie C, Croguennec L, Biensan P, Willmann P, Delmas C. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries. J Electrochem Soc 2000;147:2061.

86. Liu A, Zhang N, Stark JE, Arab P, Li H, Dahn JR. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: part I. two-step lithiation method for Al- or Mg-doped LiNiO2. J Electrochem Soc 2021;168:040531.

87. Liu Q, Wu Z, Sun J, et al. Facile synthesis of crack-free single-crystalline Al-doped Co-free Ni-rich cathode material for lithium-ion batteries. Electrochim Acta 2023;437:141473.

88. Nie L, Wang Z, Zhao X, et al. Cation/anion codoped and cobalt-free Li-rich layered cathode for high-performance Li-ion batteries. Nano Lett 2021;21:8370-7.

89. Xi Y, Wang M, Xu L, et al. A new Co-free Ni-rich LiNi0.8Fe0.1Mn0.1O2 cathode for low-cost Li-ion batteries. ACS Appl Mater Interfaces 2021;13:57341-9.

90. Deng S, Li Y, Dai Q, et al. Structure and primary particle double-tuning by trace nano-TiO2 for a high-performance LiNiO2 cathode material. Sustain Energy Fuels 2019;3:3234-43.

91. Yoon CS, Choi M, Jun D, et al. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chem Mater 2018;30:1808-14.

92. Tatsumi K, Sasano Y, Muto S, et al. Local atomic and electronic structures around Mg and Al dopants in LiNiO2 electrodes studied by XANES and ELNES and first-principles calculations. Phys Rev B 2008;78:045108.

93. Liu A, Zhang N, Stark JE, Arab P, Li H, Dahn JR. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: part II. one-step lithiation method of Mg-doped LiNiO2. J Electrochem Soc 2021;168:050506.

94. Weber R, Li H, Chen W, Kim C, Plucknett K, Dahn JR. In situ XRD studies during synthesis of single-crystal LiNiO2, LiNi0.975Mg0.025O2, and LiNi0.95Al0.05O2 cathode materials. J Electrochem Soc 2020;167:100501.

95. Laine P, Välikangas J, Kauppinen T, et al. Synergistic effects of low - level magnesium and chromium doping on the electrochemical performance of LiNiO2 cathodes. J Solid State Electrochem 2024;28:85-101.

96. Mu L, Zhang R, Kan WH, et al. Dopant distribution in Co-free high-energy layered cathode materials. Chem Mater 2019;31:9769-76.

97. Min K, Seo SW, Song YY, Lee HS, Cho E. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys Chem Chem Phys 2017;19:1762-9.

98. Fang L, Wang M, Zhou Q, Xu H, Hu W, Li H. Suppressing cation mixing and improving stability by F doping in cathode material LiNiO2 for Li-ion batteries: first-principles study. Colloid Surface A 2020;600:124940.

99. Li B, Yan H, Ma J, et al. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Funct Mater 2014;24:5112-8.

100. Kang J, Han B. First-principles study on the thermal stability of LiNiO2 materials coated by amorphous Al2O3 with atomic layer thickness. ACS Appl Mater Interfaces 2015;7:11599-603.

101. Woo JH, Trevey JE, Cavanagh AS, et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. J Electrochem Soc 2012;159:A1120-4.

102. Scott ID, Jung YS, Cavanagh AS, et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett 2011;11:414-8.

103. Riley LA, Van Atta S, Cavanagh AS, et al. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J Power Sources 2011;196:3317-24.

104. Zhang X, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 2013;3:1299-307.

105. Seok Jung Y, Cavanagh AS, Yan Y, George SM, Manthiram A. Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J Electrochem Soc 2011;158:A1298.

106. Brow R, Donakowski A, Mesnier A, et al. Mechanical pulverization of Co-free nickel-rich cathodes for improved high-voltage cycling of lithium-ion batteries. ACS Appl Energy Mater 2022;5:6996-7005.

107. Hou A, Xu S, Xu K, Zhang M, Zhao D. Comparative studies of tungsten and zirconium doping on single crystal cobalt-free cathode material. Ionics 2021;27:4241-8.

108. Cheng J, Mu L, Wang C, et al. Enhancing surface oxygen retention through theory-guided doping selection in Li1-xNiO2 for next-generation lithium-ion batteries. J Mater Chem A 2020;8:23293-303.

109. Huang G, Wang R, Lv X, et al. Effect of niobium doping on structural stability and electrochemical properties of LiNiO2 cathode for Li-ion batteries. J Electrochem Soc 2022;169:040533.

110. Li J, Zhou Z, Luo Z, et al. Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: a review. Sustain Mater Technol 2021;29:e00305.

111. Jamil S, Yu R, Wang Q, et al. Enhanced cycling stability of nickel-rich layered oxide by tantalum doping. J Power Sources 2020;473:228597.

112. Jeong M, Kim H, Lee W, Ahn S, Lee E, Yoon W. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J Power Sources 2020;474:228592.

113. Kim U, Kim J, Hwang J, Ryu H, Yoon CS, Sun Y. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater Today 2019;23:26-36.

114. Kim U, Park J, Aishova A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries. Adv Energy Mater 2021;11:2100884.

115. Uzun D, Doğrusöz M, Mazman M, et al. Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries. Solid State Ion 2013;249-50:171-6.

116. Qian G, Zhang Y, Li L, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Stor Mater 2020;27:140-9.

117. Zhu J, Zheng J, Cao G, et al. Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries. J Power Sources 2020;464:228207.

118. Liu J, Yuan Y, Zheng J, et al. Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes. Angew Chem Int Ed 2023;62:e202302547.

119. Mesnier A, Manthiram A. Heuristics for molten-salt synthesis of single-crystalline ultrahigh-nickel layered oxide cathodes. ACS Appl Mater Interfaces 2023;15:12895-907.

120. Shen J, Zhang B, Huang W, et al. Achieving thermodynamic stability of single-crystal Co-free Ni-rich cathode material for high voltage lithium-ion batteries. Adv Funct Mater 2023;33:2300081.

121. Xia Y, Chen A, Wang K, et al. Binary-compositional core-shell structure Ni-rich cathode material with radially oriented primary particles in shell for long cycling lifespan lithium-ion batteries. Mater Today Energy 2023;34:101292.

122. Song L, Jiang P, Xiao Z, et al. Core-shell structure LiNi0.8Co0.1Mn0.1O2 cathode material with improved electrochemical performance at high voltage. Ionics 2021;27:949-59.

123. Mallick S, Patel A, Sun X, et al. Low-cobalt active cathode materials for high-performance lithium-ion batteries: synthesis and performance enhancement methods. J Mater Chem A 2023;11:3789-821.

124. Zhang S, Gao P, Wang Y, Li J, Zhu Y. Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries. J Alloy Compd 2021;885:161005.

125. Jeong D, Kwon D, Kim HJ, Shim J. Striking a balance: exploring optimal functionalities and composition of highly adhesive and dispersing binders for high-nickel cathodes in lithium-ion batteries. Adv Energy Mater 2023;13:2302845.

126. Pham HQ, Kim G, Jung HM, Song S. Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv Funct Mater 2018;28:1704690.

127. Chang B, Kim J, Cho Y, et al. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv Energy Mater 2020;10:2001069.

128. Das D, Manna S, Puravankara S. Electrolytes, Additives and binders for NMC cathodes in Li-ion batteries - a review. Batteries 2023;9:193.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/