REFERENCES

1. Berry C. The paradox of green growth: challenges and opportunities in decarbonizing the lithium-ion supply chain. In: Kalantzakos S, editor. Critical minerals, the climate crisis and the tech imperium. Cham: Springer Nature Switzerland; 2023. pp. 107-23.

2. Uslu S, Pirinççi F. The impact of COVID-19 on global energy security and energy geopolitics. In: Akıllı E, Gunes B, editors. World politics in the age of uncertainty. Cham: Springer Nature Switzerland; 2023. pp. 219-33.

3. Singh AN, Islam M, Meena A, et al. Unleashing the potential of sodium-ion batteries: current state and future directions for sustainable energy storage. Adv Funct Mater 2023;33:2304617.

4. Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat Energy 2022;7:312-9.

5. Tian H, Li Z, Feng G, et al. Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat Commun 2021;12:237.

6. Wang X, Tang S, Guo W, Fu Y, Manthiram A. Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Mater Today 2021;50:259-75.

7. Wang X, Zhang C, Sawczyk M, et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat Mater 2022;21:1057-65.

8. Sun Q, Dai L, Luo T, Wang L, Liang F, Liu S. Recent advances in solid-state metal-air batteries. Carbon Energy 2023;5:e276.

9. Zhang L, Feng R, Wang W, Yu G. Emerging chemistries and molecular designs for flow batteries. Nat Rev Chem 2022;6:524-43.

10. Olabi AG, Abbas Q, Al Makky A, Abdelkareem MA. Supercapacitors as next generation energy storage devices: properties and applications. Energy 2022;248:123617.

11. Liang Y, Yao Y. Designing modern aqueous batteries. Nat Rev Mater 2023;8:109-22.

12. Dutta A, Mitra S, Basak M, Banerjee T. A comprehensive review on batteries and supercapacitors: development and challenges since their inception. Energy Stor 2023;5:e339.

13. Hao H, Hutter T, Boyce BL, Watt J, Liu P, Mitlin D. Review of multifunctional separators: stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries. Chem Rev 2022;122:8053-125.

14. Huang L, Lu T, Xu G, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule 2022;6:906-22.

15. Hong X, Mei J, Wen L, et al. Nonlithium metal-sulfur batteries: steps toward a leap. Adv Mater 2019;31:e1802822.

16. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.

17. Tan H, Chen D, Rui X, Yu Y. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv Funct Mater 2019;29:1808745.

18. Sadik-zada ER, Gatto A, Scharfenstein M. Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility. Technol Forecast Soc Change 2023;186:121992.

19. Li X, Sengupta T, Si Mohammed K, Jamaani F. Forecasting the lithium mineral resources prices in China: evidence with facebook prophet (Fb-P) and artificial neural networks (ANN) methods. Resour Policy 2023;82:103580.

20. Frith JT, Lacey MJ, Ulissi U. A non-academic perspective on the future of lithium-based batteries. Nat Commun 2023;14:420.

21. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:1-11.

22. Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 2018;57:102-20.

23. Zhao L, Hu Z, Lai W, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.

24. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021;17:e1903194.

25. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Na-ion battery anodes: materials and electrochemistry. ACC Chem Res 2016;49:231-40.

26. He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Stor Mater 2019;23:233-51.

27. Patrike A, Yadav P, Shelke V, Shelke M. Research progress and perspective on lithium/sodium metal anodes for next-generation rechargeable batteries. ChemSusChem 2022;15:e202200504.

28. Chen J, Adit G, Li L, Zhang Y, Chua DHC, Lee PS. Optimization strategies toward functional sodium-ion batteries. Energy Environ Mater 2023;6:e12633.

29. Qiao S, Zhou Q, Ma M, Liu HK, Dou SX, Chong S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023;17:11220-52.

30. Sarkar S, Peter SC. An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future prospects from material synthesis to battery performance. J Mater Chem A 2021;9:5164-96.

31. Xu G, Amine R, Abouimrane A, et al. Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion batteries. Adv Energy Mater 2018;8:1702403.

32. Hou Z, Lei D, Jiang M, et al. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage. ACS Appl Mater Interfaces 2023;15:1367-75.

33. Yang G, Ilango PR, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small 2019;15:e1900628.

34. Wang W, Wang B, Li Y, et al. Hard carbon derived from different precursors for sodium storage. Chem Asian J 2024;19:e202301146.

35. Veerasubramani GK, Park M, Nakate UT, et al. Intrinsically nitrogen-enriched biomass-derived hard carbon with enhanced performance as a sodium-ion battery anode. Energy Fuels 2024;38:7368-78.

36. Tang Y, He J, Peng J, et al. Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery anode. Energy Fuels 2024;38:7389-98.

37. Zhang G, Chen C, Xu C, et al. Unraveling the microcrystalline carbon evolution mechanism of biomass-derived hard carbon for sodium-ion batteries. Energy Fuels 2024;38:8326-36.

38. Molaiyan P, Dos Reis GS, Karuppiah D, Subramaniyam CM, García-alvarado F, Lassi U. Recent progress in biomass-derived carbon materials for Li-ion and Na-ion batteries - a review. Batteries 2023;9:116.

39. Hu H, Xiao Y, Ling W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery. Energy Tech 2021;9:2000730.

40. Li N, Wang Y, Liu L, et al. “Self-doping” defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage. J Colloid Interface Sci 2021;592:279-90.

41. Fang L, Bahlawane N, Sun W, et al. Conversion-alloying anode materials for sodium ion batteries. Small 2021;17:e2101137.

42. Li X, Guo Y, Hu Z, et al. Improving the initial coulombic efficiency of sodium-storage antimony anodes via electrochemically alloying bismuth. ACS Appl Mater Interfaces 2023;15:45926-37.

43. Zhang H, Hasa I, Passerini S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater 2018;8:1702582.

44. Zhao S, Guo Z, Yang J, Wang C, Sun B, Wang G. Nanoengineering of advanced carbon materials for sodium-ion batteries. Small 2021;17:e2007431.

45. Lu X, Adkins ER, He Y, et al. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem Mater 2016;28:1236-42.

46. Chen Y, Li F, Guo Z, et al. Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J Power Sources 2023;557:232534.

47. Tang Z, Zhang R, Wang H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat Commun 2023;14:6024.

48. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI. Prospects in anode materials for sodium ion batteries - a review. Renew Sust Energy Rev 2020;119:109549.

49. Xiao B, Rojo T, Li X. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem 2019;12:133-44.

50. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries*. In: Nanda J, Augustyn V, editors. Transition metal oxides for electrochemical energy storage. Wiley; 2022. pp. 55-99.

51. Lim YV, Li XL, Yang HY. Recent tactics and advances in the application of metal sulfides as high-performance anode materials for rechargeable sodium-ion batteries. Adv Funct Mater 2021;31:2006761.

52. Hao Z, Shi X, Yang Z, Li L, Chou S. Developing high-performance metal selenides for sodium-ion batteries. Adv Funct Mater 2022;32:2208093.

53. Fan H, Mao P, Sun H, et al. Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater Horiz 2022;9:524-46.

54. Zhang W, Liu T, Wang Y, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries. Nano Energy 2021;90:106475.

55. Li G, Guo S, Xiang B, et al. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater 2022;2:200020.

56. Shao R, Sun Z, Wang L, et al. Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries. Angew Chem Int Ed 2024;136:e202320183.

57. Chen Z, Wu X, Sun Z, et al. Enhanced fast-charging and longevity in sodium-ion batteries through nitrogen-doped carbon frameworks encasing flower-like bismuth microspheres. Adv Energy Mater 2024;14:2400132.

58. Yao Q, Zheng C, Liu K, et al. Bi nanospheres embedded in N-doped carbon nanowires facilitate ultrafast and ultrastable sodium storage. Adv Sci ;2024:e2401730.

59. Li W, Ke L, Wei Y, et al. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A 2017;5:4413-20.

60. Li X, Qu J, Zhao Y, Lai Q, Wang P, Yi T. Reaction mechanisms, recent progress and future prospects of tin selenide-based composites for alkali-metal-ion batteries. Compos Part B Eng 2022;242:110045.

61. Wu X, Lan X, Hu R, Yao Y, Yu Y, Zhu M. Tin-based anode materials for stable sodium storage: progress and perspective. Adv Mater 2022;34:e2106895.

62. Zheng C, Yao Q, Li R, et al. Construction of robust solid-electrolyte interphase via electrode additive for high-performance Sn-based anodes of sodium-ion batteries. Energy Stor Mater 2024;67:103334.

63. Huang J, Guo X, Du X, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci 2019;12:1550-7.

64. Duan YK, Li ZW, Zhang SC, et al. Stannate-based materials as anodes in lithium-ion and sodium-ion batteries: a review. Molecules 2023;28:5037.

65. Tian Z, Zou Y, Liu G, et al. Electrolyte solvation structure design for sodium ion batteries. Adv Sci 2022;9:e2201207.

66. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 2019;31:e1808393.

67. Mou H, Xiao W, Miao C, Li R, Yu L. Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front Chem 2020;8:141.

68. Liang J, Zhang L, Xili D, Kang J. Research progress on tin-based anode materials for sodium ion batteries. Rare Met 2020;39:1005-18.

69. Sadan MK, Kim H, Kim C, et al. Ultra-long cycle life of flexible Sn anode using DME electrolyte. J Alloys Compd 2021;871:159549.

70. Daali A, Zhou X, Zhao C, et al. In situ microscopy and spectroscopy characterization of microsized Sn anode for sodium-ion batteries. Nano Energy 2023;115:108753.

71. Zheng C, Ji D, Yao Q, et al. Electrostatic shielding boosts electrochemical performance of alloy-type anode materials of sodium-ion batteries. Angew Chem Int Ed 2023;62:e202214258.

72. Yao Q, Zhu Y, Zheng C, et al. Intermolecular cross-linking reinforces polymer binders for durable alloy-type anode materials of sodium-ion batteries. Adv Energy Mater 2023;13:2202939.

73. Shen H, An Y, Man Q, et al. Chemical prelithiation/presodiation strategies toward controllable and scalable synthesis of microsized nanoporous tin at room temperature for high-energy sodium-ion batteries. Adv Funct Mater 2024;34:2309834.

74. Ying H, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci 2017;4:1700298.

75. Yang J, Guo X, Gao H, et al. A high-performance alloy-based anode enabled by surface and interface engineering for wide-temperature sodium-ion batteries. Adv Energy Mater 2023;13:2300351.

76. Zhang S, Yue L, Wang M, Feng Y, Li Z, Mi J. SnO2 nanoparticles confined by N-doped and CNTs-modified carbon fibers as superior anode material for sodium-ion battery. Solid State Ionics 2018;323:105-11.

77. Ma D, Li Y, Mi H, et al. Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew Chem Int Ed 2018;57:8901-5.

78. Fan L, Song X, Xiong D, Li X. Nitrogen-doping of graphene enhancing sodium storage of SnO2 anode. J Electroanal Chem 2019;833:340-8.

79. Wang Y, Jin Y, Zhao C, Pan E, Jia M. 1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage. J Colloid Interface Sci 2018;532:352-62.

80. Demir E, Aydin M, Arie AA, Demir-cakan R. Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. J Alloys Compd 2019;788:1093-102.

81. Choi IY, Jo C, Lim WG, et al. Amorphous Tin oxide nanohelix structure based electrode for highly reversible Na-ion batteries. ACS Nano 2019;13:6513-21.

82. Han B, Zhang W, Gao D, et al. Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage. J Power Sources 2020;449:227564.

83. Narsimulu D, Nagaraju G, Chandra Sekhar S, Ramulu B, Su Yu J. Three-dimensional porous SnO2/carbon cloth electrodes for high-performance lithium- and sodium-ion batteries. Appl Surf Sci 2021;538:148033.

84. Chen Y, Sun Y, Geng M, et al. SnO2/MXene nanoparticles as a superior high-rate and cycling-stable anode for sodium ion batteries. Mater Lett 2021;304:130704.

85. Wu YQ, Yang HX, Yang Y, et al. SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage. Small 2019;15:e1903873.

86. He X, Liu J, Kang B, et al. Preparation of SnS2/enteromorpha prolifera derived carbon composite and its performance of sodium-ion batteries. J Phys Chem Solids 2021;152:109976.

87. Ding J, Tang C, Zhu G, et al. Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance. ACS Appl Energy Mater 2021;4:846-54.

88. Jiang Y, Liu G, Lu S, et al. A novel interlayer-expanded tin disulfide/reduced graphene oxide nanocomposite as anode material for high-performance sodium-ion batteries. J Colloid Interface Sci 2022;611:215-23.

89. Li Z, Zheng J, Xiao M, et al. Three-dimensional 1T-SnS2 wrapped with graphene for sodium-ion battery anodes with highly reversible sodiation/desodiation. Scr Mater 2022;211:114500.

90. Li Q, Yu F, Cui Y, Wang J, Zhao Y, Peng J. Multilayer SnS-SnS2@GO heterostructures nanosheet as anode material for Sodium ion battery with high capacity and stability. J Alloys Compd 2023;937:168392.

91. Yang X, Miao Z, Zhong Q, et al. ZnS/SnS2 heterostructures encapsulated in N-doped carbon nanofibers for high-performance alkali metal-ion batteries. ACS Appl Mater Interfaces 2023;15:46881-94.

92. Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Stor Mater 2019;20:225-33.

93. Ou X, Cao L, Liang X, et al. Fabrication of SnS2/Mn2SnS4/Carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019;13:3666-76.

94. Zhang F, Shen Y, Shao M, et al. SnSe2 nanoparticles chemically embedded in a carbon shell for high-rate sodium-ion storage. ACS Appl Mater Interfaces 2020;12:2346-53.

95. Yang W, Chen Y, Yin X, Lai X, Wang J, Jian J. SnSe nanosheet array on carbon cloth as a high-capacity anode for sodium-ion batteries. ACS Appl Mater Interfaces 2023;15:42811-22.

96. Liu P, Han J, Zhu K, Dong Z, Jiao L. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv Energy Mater 2020;10:2000741.

97. Fan T, Wu Y, Li J, et al. Sheet-to-layer structure of SnSe2/MXene composite materials for advanced sodium ion battery anodes. New J Chem 2021;45:1944-52.

98. Wang W, Hu L, Li L, et al. Constructing a rapid ion and electron migration channels in MoSe2/SnSe2@C 2D heterostructures for high-efficiency sodium-ion half/full batteries. Electrochim Acta 2023;449:142239.

99. Kong Z, Liang Z, Huang M, et al. Yolk-shell tin phosphides composites as superior reversibility and stability anodes for lithium/sodium ion batteries. J Alloys Compd 2023;930:167328.

100. Liu C, Yang X, Liu J, Ye X. Theoretical prediction of two-dimensional SnP3 as a promising anode material for Na-ion batteries. ACS Appl Energy Mater 2018;1:3850-9.

101. Kong Z, Yao X, Shao Y, et al. SnxPy nanoplate/reduced graphene oxide composites as anode materials for lithium-/sodium-ion batteries. ACS Appl Nano Mater 2021;4:12335-45.

102. Pan E, Jin Y, Zhao C, et al. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci 2019;475:12-9.

103. Pan E, Jin Y, Zhao C, et al. Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl Energy Mater 2019;2:1756-64.

104. Zhang J, Wang W, Li B. Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase. Chem Eng J 2020;392:123810.

105. Ran L, Luo B, Gentle IR, et al. Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano 2020;14:8826-37.

106. Fan W, Gao Y, Hui Q, et al. A closed-ended MXene armor on hollow Sn4P3 nanospheres for ultrahigh-rate and stable sodium storage. Chem Eng J 2023;465:142963.

107. Fan W, Gao Y, Liu H, Xia X. Rational design of conductive MXenes-based networks by Sn and Sn4P3 nanoparticles for durable sodium-ion battery. J Power Sources 2023;562:232750.

108. Baggetto L, Ganesh P, Sun C, Meisner RA, Zawodzinski TA, Veith GM. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 2013;1:7985.

109. Liu Y, Zhou B, Liu S, Ma Q, Zhang WH. Galvanic replacement synthesis of highly uniform sb nanotubes: reaction mechanism and enhanced sodium storage performance. ACS Nano 2019;13:5885-92.

110. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 2012;48:7070-2.

111. Xu X, Dou Z, Gu E, Si L, Zhou X, Bao J. Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J Mater Chem A 2017;5:13411-20.

112. Wu C, Shen L, Chen S, et al. Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Stor Mater 2018;10:122-9.

113. Kong B, Zu L, Peng C, et al. Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage. J Am Chem Soc 2016;138:16533-41.

114. Park J, Kim M, Choi M, et al. Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries. J Power Sources 2023;568:232908.

115. Liu Y, Qing Y, Zhou B, et al. Yolk-shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries. ACS Nano 2023;17:2431-9.

116. Nieto K, Windsor DS, Kale AR, Gallawa JR, Medina DA, Prieto AL. Structural control of electrodeposited sb anodes through solution additives and their influence on electrochemical performance in Na-ion batteries. J Phys Chem C 2023;127:12415-27.

117. Zheng X, You J, Fan J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy 2020;77:105123.

118. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 2013;1:11163.

119. Song Z, Wang G, Chen Y, Lu Y, Wen Z. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries. Chem Eng J 2023;463:142289.

120. Shen H, Zheng X, Kang Q, et al. High-performance and sodiation mechanism of a pulse potential-electrodeposited Sb-Zn alloy as an anode for sodium-ion batteries. Appl Surf Sci 2023;609:155243.

121. Chen B, Liang M, Wu Q, Zhu S, Zhao N, He C. Recent developments of antimony-based anodes for sodium- and potassium-ion batteries. Trans Tianjin Univ 2022;28:6-32.

122. Zhou X, Deng H, Wang A, Song J, Lei Z, Xu Y. Antimony oxides-based anode materials for alkali metal-ion storage. Chemistry 2023;29:e202300506.

123. Deng M, Li S, Hong W, et al. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 2019;223:46-52.

124. Kim S, Qu S, Zhang R, Braun PV. High volumetric and gravimetric capacity electrodeposited mesostructured Sb2O3 sodium ion battery anodes. Small 2019;15:e1900258.

125. Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Stor Mater 2018;13:247-56.

126. Li D, Li J, Cao J, Fu X, Zhou L, Han W. Highly flexible free-standing Sb/Sb2O3 @N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability. Sustain Energy Fuels 2020;4:5732-8.

127. Ye J, Xia G, Zheng Z, Hu C. Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries. Int J Hydrogen Energy 2020;45:9969-78.

128. Liao S, Wang X, Hu H, Chen D, Zhang M, Luo J. Carbon-encapsulated Sb6O13 nanoparticles for an efficient and durable sodium-ion battery anode. J Alloys Compd 2021;852:156939.

129. Subramanyan K, Palmurukan MR, Lee Y, Aravindan V. Exfoliated graphene oxide@ Sb2O3 octahedrons as alloy-conversion anode for high-performance Na-ion batteries with P2-type Na2/3Ni1/3Mn2/3O2 cathode. Electrochim Acta 2023;470:143308.

130. Lakshmi K, Deivanayagam R, Shaijumon M. Carbon nanotube ‘wired’ octahedral Sb2O3/graphene aerogel as efficient anode material for sodium and lithium ion batteries. J Alloys Compd 2021;857:158267.

131. Deng M, Li S, Hong W, et al. Natural stibnite ore (Sb2S3) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage. RSC Adv 2019;9:15210-6.

132. Xie J, Xia J, Yuan Y, et al. Sb2S3 embedded in carbon-silicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries. J Power Sources 2019;435:226762.

133. Huang Y, Wang Z, Jiang Y, et al. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv Sci 2018;5:1800613.

134. Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo WB. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020;14:3610-20.

135. Lin J, Yao L, Zhang C, et al. Construction of Sb2S3@SnS@C tubular heterostructures as high-performance anode materials for sodium-ion batteries. ACS Sustain Chem Eng 2021;9:11280-9.

136. Zhang H, Ren M, Jiang W, Yao J, Pan L, Yang J. Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. J Alloys Compd 2021;887:161318.

137. Li D, Li J, Liu H, et al. Ti3C2Tx constrained Sb2S3 composite biomass-derived carbon ribbon film achieves stable sodium storage for flexible quasi-solid full-battery. Chem Eng J 2023;477:147045.

138. Zhu M, Li J, Yang X, Li X, Wang L, Lü W. 3D reduced graphene oxide wrapped MoS2@Sb2S3 heterostructures for high performance sodium-ion batteries. Appl Surf Sci 2023;624:157106.

139. Ou X, Yang C, Xiong X, et al. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater 2017;27:1606242.

140. Li J, Zhang W, Zheng W. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small 2024;20:e2305021.

141. Nam K, Park C. 2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes. J Power Sources 2019;433:126639.

142. Wang Y, Cao D, Zhang K, et al. Cation-exchange construction of ZnSe/Sb2Se3 hollow microspheres coated by nitrogen-doped carbon with enhanced sodium ion storage capability. Nanoscale 2020;12:17915-24.

143. Ihsan-ul-haq M, Huang H, Wu J, et al. Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon 2021;171:119-29.

144. Hu L, Pan J, Zhao P, Shi G, Wang B, Huang F. A new method of synthesis of Sb2Se3/rGO as a high-rate and low-temperature anode for sodium-ion batteries. Mater Adv 2022;3:3554-61.

145. Chong S, Ma M, Yuan L, et al. Hierarchical encapsulation and rich sp2N assist Sb2Se3-based conversion-alloying anode for long-life sodium- and potassium-ion storage. Energy Environ Mater 2023;6:e12458.

146. Yang J, Li J, Lu J, et al. Synergistically boosting reaction kinetics and suppressing polyselenide shuttle effect by Ti3C2Tx/Sb2Se3 film anode in high-performance sodium-ion batteries. J Colloid Interf Sci 2023;649:234-44.

147. Wu Y, Luo W, Gao P, et al. Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy 2020;77:105299.

148. Wang Y, Niu P, Li J, Wang S, Li L. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Stor Mater 2021;34:436-60.

149. Dong S, Wang L, Huang X, Liang J, He X. Challenges and prospects of phosphorus-based anode materials for secondary batteries. Batteries Supercaps 2023;6:e202300265.

150. Liu S, Xu H, Bian X, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano 2018;12:7380-7.

151. Hu Y, Li B, Jiao X, Zhang C, Dai X, Song J. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv Funct Mater 2018;28:1801010.

152. Capone I, Hurlbutt K, Naylor AJ, Xiao AW, Pasta M. Effect of the particle-size distribution on the electrochemical performance of a red phosphorus-carbon composite anode for sodium-ion batteries. Energy Fuels 2019;33:4651-8.

153. Xiao W, Sun Q, Banis MN, et al. Unveiling the interfacial instability of the phosphorus/carbon anode for sodium-ion batteries. ACS Appl Mater Interf 2019;11:30763-73.

154. Liu W, Ju S, Yu X. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano 2020;14:974-84.

155. Fang K, Liu D, Xiang X, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy 2020;69:104451.

156. Jin H, Lu H, Wu W, et al. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy 2020;70:104569.

157. Liu Y, Liu Q, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun 2020;11:2520.

158. Subramaniyam CM, Kang MA, Li J, VahidMohammadi A, Hamedi MM. Additive-free red phosphorus/Ti3C2Tx MXene nanocomposite anodes for metal-ion batteries. Energy Adv 2022;1:999-1008.

159. Zhu Z, Pei Z, Liu B, et al. Hierarchical ion/electron networks enable efficient red phosphorus anode with high mass loading for sodium ion batteries. Adv Funct Mater 2022;32:2110444.

160. Kaur H, Konkena B, Gabbett C, et al. Amorphous 2D-nanoplatelets of red phosphorus obtained by liquid-phase exfoliation yield high areal capacity Na-ion battery anodes. Adv Energy Mater 2023;13:2203013.

161. Li Z, Zhao H. Recent developments of phosphorus-based anodes for sodium ion batteries. J Mater Chem A 2018;6:24013-30.

162. Chang G, Zhao Y, Dong L, et al. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A 2020;8:4996-5048.

163. Zhou J, Shi Q, Ullah S, et al. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries. Adv Funct Mater 2020;30:2004648.

164. Shen H, Han X, Zheng X, et al. One-step electrochemical synthesis and optimization of Sb-Co-P alloy anode for sodium ion battery. Electrochim Acta 2023;438:141529.

165. Zhang N, Chen X, Zhao J, He P, Ding X. Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes. Electrochim Acta 2023;439:141602.

166. Jung SC, Jung DS, Choi JW, Han YK. Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 2014;5:1283-8.

167. Liu C, Jiang Y, Meng C, Liu X, Li B, Xia S. Amorphous germanium nanomaterials as high-performance anode for lithium and sodium-ion batteries. Adv Mater Technol 2023;8:2201817.

168. Li M, Zhang Z, Ge X, et al. Enhanced electrochemical properties of carbon coated Zn2GeO4 micron-rods as anode materials for sodium-ion batteries. Chem Eng J 2018;331:203-10.

169. Tseng K, Huang S, Chang W, Tuan H. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-ion and sodium-ion battery anodes. Chem Mater 2018;30:4440-7.

170. Shen H, Ma Z, Yang B, et al. Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries. J Power Sources 2019;433:126682.

171. Li W, Li X, Liao J, et al. Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Stor Mater 2019;20:380-7.

172. Sung G, Nam K, Choi J, Park C. Germanium telluride: layered high-performance anode for sodium-ion batteries. Electrochim Acta 2020;331:135393.

173. Wang C, Wang D, Ma X, et al. Isotropy-induced stress relaxation and strong-tolerance for high-rate and long-duration sodium storage by amorphous structure engineering. Adv Funct Mater 2022;32:2204687.

174. Yanilmaz M, Cihanbeyoğlu G, Kim J. Centrifugally spun binder-free n, s-doped Ge@PCNF anodes for Li-ion and Na-ion batteries. ACS Omega 2023;8:16987-95.

175. Li Y, Wu F, Li Y, et al. Multilevel gradient-ordered silicon anode with unprecedented sodium storage. Adv Mater 2024;36:e2310270.

176. Arrieta U, Katcho NA, Arcelus O, Carrasco J. First-principles study of sodium intercalation in crystalline NaxSi24 (0 ≤ x ≤ 4) as anode material for Na-ion batteries. Sci Rep 2017;7:5350.

177. Majid A, Hussain K, Ud-din Khan S, Ud-din Khan S. First principles study of SiC as the anode in sodium ion batteries. New J Chem 2020;44:8910-21.

178. Zhao Q, Huang Y, Hu X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochem Commun 2016;70:8-12.

179. Han Y, Lin N, Xu T, et al. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale 2018;10:3153-8.

180. Jangid MK, Vemulapally A, Sonia FJ, Aslam M, Mukhopadhyay A. Feasibility of reversible electrochemical Na-storage and cyclic stability of amorphous silicon and silicon-graphene film electrodes. J Electrochem Soc 2017;164:A2559-65.

181. Kempf A, Kiefer S, Graczyk-zajac M, Ionescu E, Riedel R. Tin-functionalized silicon oxycarbide as a stable, high-capacity anode material for Na-ion batteries. Open Ceram 2023;15:100388.

182. Zhang Y, Tang YC, Li XT, et al. Porous amorphous silicon hollow nanoboxes coated with reduced graphene oxide as stable anodes for sodium-ion batteries. ACS Omega 2022;7:30208-14.

183. Zeng L, Liu R, Han L, et al. Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries. Chemistry 2018;24:4841-8.

184. Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl Energy Mater 2019;2:2205-13.

185. Gong H, Du T, Liu L, et al. Self-source silicon embedded in 2D biomass-based carbon sheet as anode material for sodium ion battery. Appl Surf Sci 2022;586:152759.

186. Nazarian-samani M, Nazarian-samani M, Haghighat-shishavan S, Kim K. Predelithiation-driven ultrastable Na-ion battery performance using Si,P-rich ternary M-Si-P anodes. Energy Stor Mater 2022;49:421-32.

187. Din MA, Li C, Zhang L, Han C, Li B. Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries. Mater Today Phys 2021;21:100486.

188. Sun J, Li M, Oh JAS, Zeng K, Lu L. Recent advances of bismuth based anode materials for sodium-ion batteries. Mater Technol 2018;33:563-73.

189. Park B, Lee S, Han D, et al. Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery. Appl Surf Sci 2023;614:156188.

190. Hu C, Zhu Y, Ma G, et al. Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries. Electrochim Acta 2021;365:137379.

191. Xue P, Wang N, Fang Z, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett 2019;19:1998-2004.

192. Yin H, Cao M, Yu X, et al. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater Chem Front 2017;1:1615-21.

193. Liu R, Yu L, He X, et al. Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability. eScience 2023;3:100138.

194. Lin J, Lu S, Zhang Y, Zeng L, Zhang Y, Fan H. Selenide-doped bismuth sulfides (Bi2S3-xSex) and their hierarchical heterostructure with ReS2 for sodium/potassium-ion batteries. J Colloid Interf Sci 2023;645:654-62.

195. Pang S, Hu Z, Fan C, et al. Insights into the sodium storage mechanism of Bi2Te3 nanosheets as superior anodes for sodium-ion batteries. Nanoscale 2022;14:1755-66.

196. Meija R, Lazarenko V, Rublova Y, et al. Electrochemical properties of bismuth chalcogenide/MXene/CNT heterostructures for application in Na-ion batteries. Sustain Mater Technol 2023;38:e00768.

197. Wang Y, Xu X, Li F, et al. Rational design of bismuth metal anodes for sodium-/potassium-ion batteries: recent advances and perspectives. Batteries 2023;9:440.

198. Li X, Ni J, Savilov SV, Li L. Materials based on antimony and bismuth for sodium storage. Chemistry 2018;24:13719-27.

199. Ellis LD, Wilkes BN, Hatchard TD, Obrovac MN. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J Electrochem Soc 2014;161:A416-21.

200. Sottmann J, Herrmann M, Vajeeston P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater 2016;28:2750-6.

201. Zhang X, Qiu X, Lin J, et al. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries. Small 2023;19:e2302071.

202. Liang Y, Song N, Zhang Z, et al. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv Mater 2022;34:e2202673.

203. Liu Y, Wang Y, Wang H, et al. Binder-free 3D hierarchical Bi Nanosheet/CNTs arrays anode for full sodium-ion battery with high voltage above 4 V. J Power Sources 2022;540:231639.

204. Pu B, Liu Y, Bai J, et al. Iodine-ion-assisted galvanic replacement synthesis of bismuth nanotubes for ultrafast and ultrastable sodium storage. ACS Nano 2022;16:18746-56.

205. Zhang W, Cao P, Li L, et al. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries. Chem Eng J 2018;348:599-607.

206. Li R, Zhang G, Zhang P, et al. Accelerating ion transport via in-situ formation of built-in electric field for fast charging sodium-ion batteries. Chem Eng J 2022;450:138019.

207. Chen Y, Liu H, Guo X, et al. Bimetallic sulfide SnS2/FeS2 nanosheets as high-performance anode materials for sodium-ion batteries. ACS Appl Mater Interf 2021;13:39248-56.

208. Zhou J, Dou Q, Zhang L, et al. A novel and fast method to prepare a Cu-supported α-Sb2S3@CuSbS2 binder-free electrode for sodium-ion batteries. RSC Adv 2020;10:29567-74.

209. Li X, Qu J, Hu Z, Xie H, Yin H. Electrochemically converting Sb2S3/CNTs to Sb/CNTs composite anodes for sodium-ion batteries. Int J Hydrogen Energy 2021;46:17071-83.

210. Li D, Yuan Z, Li J, et al. A bioconfined synthesis strategy of Sb2S3@N-doped carbon ribbons for boosting ultralong-life sodium storage. J Power Sources 2022;546:231875.

211. Zhou J, Ding Y, Dou Q, et al. Enhancing sodium-ion batteries performance enabled by three-dimensional nanoflower Sb2S3@rGO anode material. Mater Chem Phys 2023;303:127837.

212. Li K, Yue L, Hu J, et al. Construction of hollow core-shell Sb2S3/S@S-doped C composite based on complexation reaction for high performance anode of sodium-ion batteries. Appl Surf Sci 2023;613:156111.

213. Dong C, Shao H, Zhou Y, et al. Construction of ZnS/Sb2S3 heterojunction as an ion-transport booster toward high-performance sodium storage. Adv Funct Mater 2023;33:2211864.

214. Liu W, Du L, Ju S, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano 2021;15:5679-88.

215. Liu X, Xiao B, Daali A, et al. Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries. ACS Energy Lett 2021;6:547-56.

216. Ma X, Ji C, Li X, Liu Y, Xiong X. Red@Black phosphorus core-shell heterostructure with superior air stability for high-rate and durable sodium-ion battery. Mater Today 2022;59:36-45.

217. Song J, Wu M, Fang K, Tian T, Wang R, Tang H. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation. J Colloid Interf Sci 2023;630:443-52.

218. Saddique J, Zhang X, Wu T, et al. Enhanced silicon diphosphide-carbon composite anode for long-cycle, high-efficient sodium ion batteries. ACS Appl Energy Mater 2019;2:2223-9.

219. Ababaikeri R, Sun Y, Wang X, et al. Scalable fabrication of Bi@N-doped carbon as anodes for sodium/potassium-ion batteries with enhanced electrochemical performances. J Alloys Compd 2023;935:168207.

220. He B, Cunha J, Hou Z, Li G, Yin H. 3D hierarchical self-supporting Bi2Se3-based anode for high-performance lithium/sodium-ion batteries. J Colloid Interf Sci 2023;650:857-64.

221. Wang M, Li H, Cheng X, Tian S, Wang X. Graphene-encapsulated nitrogen-doped carbon@Bi enables rapid, ultrahigh and durable sodium storage. Batteries Supercaps 2023;6:e202300055.

222. Chen J, Zhang G, Xiao J, et al. A stress self-adaptive bimetallic stellar nanosphere for high-energy sodium-ion batteries. Adv Funct Mater 2024;34:2307959.

223. Wei S, Li W, Ma Z, Deng X, Li Y, Wang X. Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb composite anodes for high-performance sodium-ion batteries. Small 2023;19:e2304265.

224. Wang J, Bai W, Zhou Y, et al. Sea cucumber-inspired multi-phase metal sulfides with hierarchical structure towards energy storage with promoted safety. J Energy Stor 2024;76:109743.

225. Hu K, Chen Y, Zheng C, et al. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for sodium-ion batteries. RSC Adv 2023;13:25552-60.

226. Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett 2014;6:347-58.

227. Pan Q, Wu Y, Zheng F, et al. Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as high performance anode materials for lithium ion batteries. Chem Eng J 2018;348:653-60.

228. Guo S, Feng Y, Wang L, Jiang Y, Yu Y, Hu X. Architectural engineering achieves high-performance alloying anodes for lithium and sodium ion batteries. Small 2021;17:e2005248.

229. Ma D, Li Y, Zhang P, Lin Z. Oxygen vacancy engineering in tin(IV) oxide based anode materials toward advanced sodium-ion batteries. ChemSusChem 2018;11:3693-703.

230. Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020;4:2000218.

231. Wang X, Feng B, Huang L, et al. Superior electrochemical performance of Sb-Bi alloy for sodium storage: understanding from alloying element effects and new cause of capacity attenuation. J Power Sources 2022;520:230826.

232. Zheng Y, Wei S, Shang J, Wang D, Lei C, Zhao Y. High-performance sodium-ion batteries enabled by 3D nanoflowers comprised of ternary Sn-based dichalcogenides embedded in nitrogen and sulfur dual-doped carbon. Small 2023;19:e2303746.

233. Gao H, Wang Y, Guo Z, et al. Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries. J Energy Chem 2022;75:154-63.

234. Fu R, Pan J, Wang M, et al. In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium storage in ternary metal sulfide anode. ACS Nano 2023;17:12483-98.

235. Wu J, Ihsan-ul-haq M, Chen Y, Kim J. Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano Energy 2021;89:106489.

236. Peled E, Menkin S. Review - SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19.

237. Yu F, Du L, Zhang G, Su F, Wang W, Sun S. Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries. Adv Funct Mater 2020;30:1906890.

238. Yadav P, Shelke V, Patrike A, Shelke M. Sodium-based batteries: development, commercialization journey and new emerging chemistries. Oxford Open Mater Sci 2023;3:itac019.

239. Eddie Spence, Annie Lee; Bloomberg. Tesla rival BYD and other battery giants are betting on sodium for EVs and energy storage - and challenging the dominance of lithium-ion. Available from: https://fortune.com/2023/11/26/battery-giants-sodium-bet-electric-vehicles-energy-storage-lithium-ion/ [Last accessed on 1 Jul 2024].

240. Gebert F, Knott J, Gorkin R, Chou S, Dou S. Polymer electrolytes for sodium-ion batteries. Energy Stor Mater 2021;36:10-30.

241. Li Y, Wu F, Li Y, et al. Ether-based electrolytes for sodium ion batteries. Chem Soc Rev 2022;51:4484-536.

242. Sirengo K, Babu A, Brennan B, Pillai SC. Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway. J Energy Chem 2023;81:321-38.

243. Westman K, Dugas R, Jankowski P, et al. Diglyme based electrolytes for sodium-ion batteries. ACS Appl Energy Mater 2018;1:2671-80.

244. Kulova TL, Skundin AM. Electrode/electrolyte interphases of sodium-ion batteries. Energies 2022;15:8615.

245. Usui H, Domi Y, Fujiwara K, et al. Charge-discharge properties of a Sn4P3 negative electrode in ionic liquid electrolyte for Na-ion batteries. ACS Energy Lett 2017;2:1139-43.

246. Domingues LS, de Melo HG, Martins VL. Ionic liquids as potential electrolytes for sodium-ion batteries: an overview. Phys Chem Chem Phys 2023;25:12650-67.

247. Ahmad H, Kubra KT, Butt A, Nisar U, Iftikhar FJ, Ali G. Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries. J Power Sources 2023;581:233518.

248. Gandi S, Chidambara Swamy Vaddadi VS, Sripada Panda SS, et al. Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: a review. J Power Sources 2022;521:230930.

249. Tripathi AM, Su WN, Hwang BJ. In situ analytical techniques for battery interface analysis. Chem Soc Rev 2018;47:736-851.

250. Zhou L, Cao Z, Wahyudi W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett 2020;5:766-76.

251. Zhang J, Gai J, Song K, Chen W. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep Phys Sci 2022;3:100868.

252. Li Z, Wu Z, Wu S, et al. Designing advanced polymeric binders for high-performance rechargeable sodium batteries. Adv Funct Mater 2024;34:2307261.

253. Chen H, Zhang S, Liu G, Yan C. Polymeric binders in modern metal-ion batteries. In: Zhang S, Lu J, editors. Functional polymers for metal-ion batteries. New York: Wiley; 2023. pp. 61-117.

254. Li RR, Yang Z, He XX, et al. Binders for sodium-ion batteries: progress, challenges and strategies. Chem Commun 2021;57:12406-16.

255. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S. Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 2018;11:3096-127.

256. Rasheed T, Anwar MT, Naveed A, Ali A. Biopolymer based materials as alternative greener binders for sustainable electrochemical energy storage applications. ChemistrySelect 2022;7:e202203202.

257. Feng J, Wang L, Li D, Lu P, Hou F, Liang J. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries. Prog Nat Sci 2018;28:205-11.

258. Patra J, Rath PC, Li C, et al. A water-soluble NaCMC/NaPAA binder for exceptional improvement of sodium-ion batteries with an SnO2-ordered mesoporous carbon anode. ChemSusChem 2018;11:3923-31.

259. Sarkar S, Roy S, Zhao Y, Zhang J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: structural design, charge storage mechanisms, key challenges and perspectives. Nano Res 2021;14:3690-723.

260. Zhang Y, Su Q, Xu W, et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries. Adv Sci 2019;6:1900162.

261. Choi Y, Lee J. Continuous/reversible phase transition behaviors and their effect on the hysteresis energy loss of the anodes in Na-ion batteries. Electrochim Acta 2019;328:135106.

262. Huang Z, Zheng X, Liu H, et al. Long cycle life and high-rate sodium metal batteries enabled by an active/inactive Co-Sn alloy interface. Adv Funct Mater 2024;34:2302062.

263. Sarkar S, Mukherjee PP. Synergistic voltage and electrolyte mediation improves sodiation kinetics in µ-Sn alloy-anodes. Energy Stor Mater 2021;43:305-16.

264. Wang XZ, Zuo Y, Qin Y, et al. Fast Na+ kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium oxide cathodes. Adv Mater 2024;36:e2312300.

265. Liu G, Sun Z, Shi X, et al. 2D-layer-structure Bi to quasi-1D-structure NiBi3: structural dimensionality reduction to superior sodium and potassium ion storage. Adv Mater 2023;35:e2305551.

266. Feng D, Tang S, Xu H, Zeng T. High performance sodium-ion anodes based on FeSb2S4/Sb embedded within porous reduced graphene oxide/carbon nanotubes matrix. J Alloys Compd 2023;931:167576.

267. Li C, Pei YR, Zhao M, Yang CC, Jiang Q. Sodium storage performance of ultrasmall SnSb nanoparticles. Chem Eng J 2021;420:129617.

268. Kang J, Lee JI, Choi S, Choi Y, Park S, Ryu J. Nonporous oxide-terminated multicomponent bulk anode enabling energy-dense sodium-ion batteries. ACS Appl Mater Interf 2023;15:26576-84.

269. Gandharapu P, Das A, Tripathi R, Srihari V, Poswal HK, Mukhopadhyay A. Facile and scalable development of high-performance carbon-free Tin-based anodes for sodium-ion batteries. ACS Appl Mater Interf 2023;15:37504-16.

270. Cheng X, Li D, Peng S, et al. In-situ alloy-modified sodiophilic current collectors for anode-less sodium metal batteries. Batteries 2023;9:408.

271. Patel PC, Awasthi S, Mishra PK, Lakharwal P, Kashyap J. Fe-as intermetallic alloys: a way out for sodium-ion batteries. Energy Fuels 2023;37:16062-71.

272. Li H, He Y, Li X, et al. Pomegranate-like Sn-Ni nanoalloys@N-doped carbon nanocomposites as high-performance anode materials for Li-ion and Na-ion batteries. Appl Surf Sci 2023;611:155672.

273. Li W, Yu C, Huang S, et al. Synergetic Sn incorporation-Zn substitution in copper-based sulfides enabling superior Na-ion storage. Adv Mater 2024;36:e2305957.

274. Ye W, Feng Z, Xiong D, He M. Mesoporous C-covered Sn/SnO2-Ni nanoalloy particles as anode materials for high-performance lithium/sodium-ion batteries. Electrochim Acta 2023;471:143401.

275. Sohan A, Kumar A, Narayanan TN, Kollu P. Tin antimony alloy based reduced graphene oxide composite for fast charging sodium-ion batteries. J Energy Stor 2023;74:109312.

276. Chen X, Zhang N, He P, Ding X. High-capacity Sb2SnO5 with controlled Sb/Sn phase modulation as advanced anode material for sodium-ion batteries. J Alloys Compd 2023;938:168472.

277. Meng F, Chen X, Zhou H, et al. Controllable fabrication of Sn/Sb nanodomains improved Sb2SnO5 anodes for sodium ion batteries. ChemistrySelect 2023;8:e202302417.

278. Bhar M, Pappu S, Bhattacharjee U, Bulusu SV, Rao TN, Martha SK. Designing a freestanding electrode of intermetallic Ni-Sn alloy deposit as an anode for lithium-ion and sodium-ion batteries. J Electrochem Soc 2023;170:040501.

279. Priyanka P, Nalini B, Soundarya GG, Christopher Selvin P, Dutta DP. Effect of pulverisation on sulfide and tin antimonide anodes for sodium-ion batteries. Front Energy Res 2023;11:1266653.

280. Hou H, Jing M, Yang Y, et al. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J Mater Chem A 2015;3:2971-7.

281. Kebede MA. Tin oxide-based anodes for both lithium-ion and sodium-ion batteries. Curr Opin Electrochem 2020;21:182-7.

282. Li Z, Zheng Y, Liu Q, et al. Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J Mater Chem A 2020;8:19113-32.

283. Sang J, Zhang X, Liu K, et al. Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient high-capacity anode for sodium-ion batteries. Adv Funct Mater 2023;33:2211640.

284. Liu M, Zhang J, Sun Z, et al. Dual mechanism for sodium based energy storage. Small 2023;19:e2206922.

285. Ru J, He T, Chen B, et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew Chem Int Ed 2020;59:14621-7.

286. Xu S, Dong H, Yang D, et al. Promising cathode materials for sodium-ion batteries from lab to application. ACS Cent Sci 2023;9:2012-35.

287. Dai Z, Mani U, Tan HT, Yan Q. Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 2017;1:1700098.

288. Jing WT, Yang CC, Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. J Mater Chem A 2020;8:2913-33.

289. Lin K, Liu Q, Zhou Y, et al. Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-structured SIBs: combined theoretical and experimental study. Chem Eng J 2023;463:142464.

290. Li F, Yu X, Tang K, Peng X, Zhao Q, Li B. Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries. J Appl Electrochem 2023;53:9-18.

291. Oh SM, Myung ST, Jang MW, Scrosati B, Hassoun J, Sun YK. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys 2013;15:3827-33.

292. Liu M, Yang Z, Shen Y, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. J Mater Chem A 2021;9:5639-47.

293. He W, Chen K, Pathak R, et al. High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries. Chem Eng J 2021;414:128638.

294. Chen S, Ao Z, Sun B, Xie X, Wang G. Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Stor Mater 2016;5:180-90.

295. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 2015;25:214-20.

296. Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano 2014;8:11824-35.

297. Zhu Y, Yao Q, Shao R, et al. Microsized gray Tin as a high-rate and long-life anode material for advanced sodium-ion batteries. Nano Lett 2022;22:7976-83.

298. Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous Tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. ChemSusChem 2018;11:3376-81.

299. Chen B, Zhang H, Liang M, et al. NaCl-pinned antimony nanoparticles combined with ion-shuttle-induced graphitized 3D carbon to boost sodium storage. Cell Rep Phys Sci 2022;3:100891.

300. Li X, Xiao S, Niu X, Chen JS, Yu Y. Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium storage. Adv Funct Mater 2021;31:2104798.

301. Ni J, Li X, Sun M, et al. Durian-inspired design of bismuth-antimony alloy arrays for robust sodium storage. ACS Nano 2020;14:9117-24.

302. Zhang R, Yang Y, Guo L, Luo Y. A fast and high-efficiency electrochemical exfoliation strategy towards antimonene/carbon composites for selective lubrication and sodium-ion storage applications. Phys Chem Chem Phys 2022;24:4957-65.

303. Tian W, Zhang S, Huo C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano 2018;12:1887-93.

304. Gao H, Niu J, Zhang C, Peng Z, Zhang Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018;12:3568-77.

305. Li W, Han C, Gu Q, Chou S, Liu HK, Dou SX. Three-dimensional electronic network assisted by TiN conductive pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano 2020;14:4609-17.

306. Wu Y, Xing F, Xu R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance. J Mater Chem A 2019;7:8581-8.

307. Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano 2019;13:13513-23.

308. Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018;52:1-10.

309. Zhu L, Xu K, Fang Y, et al. Se-induced fibrous nano red P with superior conductivity for sodium batteries. Adv Funct Mater 2023;33:2302444.

310. Guo X, Zhang W, Zhang J, et al. Boosting sodium storage in two-dimensional Phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 2020;14:3651-9.

311. Sun J, Lee HW, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 2015;10:980-5.

312. Shuai H, Ge P, Hong W, et al. Electrochemically exfoliated phosphorene-graphene hybrid for sodium-ion batteries. Small Methods 2019;3:1800328.

313. Liu Y, Liu Q, Zhang A, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes. ACS Nano 2018;12:8323-9.

314. Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater 2019;29:1809195.

315. Xiong P, Bai P, Li A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater 2019;31:e1904771.

316. Cheng X, Yang H, Wei C, et al. Synergistic effect of 1D bismuth nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries. J Mater Chem A 2023;11:8081-90.

317. Guo S, Wei C, Wang L, et al. Micro-sized porous bulk bismuth caged by carbon for fast charging and ultralong cycling in sodium-ion batteries. Cell Rep Phys Sci 2023;4:101463.

318. Cheng X, Shao R, Li D, et al. A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Adv Funct Mater 2021;31:2011264.

319. Wang C, Wang L, Li F, Cheng F, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater 2017;29:1702212.

320. Hou D, Xia D, Gabriel E, et al. Spatial and temporal analysis of sodium-ion batteries. ACS Energy Lett 2021;6:4023-54.

321. Tang F, Wu Z, Yang C, et al. Synchrotron X-ray tomography for rechargeable battery research: fundamentals, setups and applications. Small Methods 2021;5:e2100557.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/