REFERENCES

1. Suryanto BHR, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 2021;372:1187-91.

2. Wang S, Ichihara F, Pang H, Chen H, Ye J. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv Funct Mater 2018;28:1803309.

3. Chen Z, Dolfing J, Zhuang S, Wu Y. Periphytic biofilms-mediated microbial interactions and their impact on the nitrogen cycle in rice paddies. Eco Environ Health 2022;1:172-80.

4. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed 2020;59:5350-4.

5. Rosca V, Duca M, de Groot MT, Koper MT. Nitrogen cycle electrocatalysis. Chem Rev 2009;109:2209-44.

6. Penuelas J, Sardans J. Human-driven global nutrient imbalances increase risks to health. Eco Environ Health 2023;2:246-51.

7. Duca M, Koper MTM. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ Sci 2012;5:9726-42.

8. Du R, Cao S, Peng Y, Zhang H, Wang S. Combined partial denitrification (PD)-Anammox: A method for high nitrate wastewater treatment. Environ Int 2019;126:707-16.

9. Shen J, He R, Han W, Sun X, Li J, Wang L. Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). J Hazard Mater 2009;172:595-600.

10. Zheng W, Zhu L, Yan Z, et al. Self-Activated Ni Cathode for Electrocatalytic Nitrate Reduction to Ammonia: From Fundamentals to Scale-Up for Treatment of Industrial Wastewater. Environ Sci Technol 2021;55:13231-43.

11. Zhang C, Zhang Y, Deng R, et al. Enabling logistics automation in nanofactory: cobalt phosphide embedded metal-organic frameworks for efficient electrocatalytic nitrate reduction to ammonia. Adv Mater 2024:e2313844.

12. Li J, Zhan G, Yang J, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J Am Chem Soc 2020;142:7036-46.

13. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal 2020;10:3533-40.

14. Gao Z, Lai Y, Tao Y, Xiao L, Zhang L, Luo F. Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent Sci 2021;7:1066-72.

15. Chen G, Yuan Y, Jiang H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat Energy 2020;5:605-13.

16. Sun WJ, Ji HQ, Li LX, et al. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew Chem Int Ed 2021;60:22933-9.

17. Carvalho OQ, Marks R, Nguyen HKK, et al. Role of electronic structure on nitrate reduction to ammonium: a periodic journey. J Am Chem Soc 2022;144:14809-18.

18. Fan X, Liang J, Zhang L, et al. Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO3-x nanofiber. Carbon Neutral 2022;1:6-13.

19. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2018;2:1242-64.

20. Ding S, Yin L, Lyu Z, et al. Wearable microgrids empowered by single-atom materials. Innova Mater 2023;2:100023.

21. Chakraborty R, K V, Pradhan M, Nayak AK. Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications. J Mater Chem A 2022;10:6965-7005.

22. Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev 2020;120:12217-314.

23. Zhao J, Xue S, Barber J, Zhou Y, Meng J, Ke X. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J Mater Chem A 2020;8:4700-34.

24. Wei Y, Xia H, Yan W, Zhang J. Recent processing of interaction mechanisms of single metallic atom/clusters in energy electrocatalysis. Energy Mater 2023;3:300033.

25. Gong X, Song P, Han C, Xiao Y, Mei X, Xu W. Heterogeneous single-atom catalysts for energy process: recent progress, applications and challenges. Energy Mater 2023;3:300016.

26. Cheng XF, He JH, Ji HQ, et al. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv Mater 2022;34:e2205767.

27. Zhu C, Shi Q, Feng S, Du D, Lin Y. Single-atom catalysts for electrochemical water splitting. ACS Energy Lett 2018;3:1713-21.

28. Shang W, Liu W, Cai X, et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv Powder Mater 2023;2:100094.

29. Jiang F, Li Y, Pan Y. Design principles of single-atom catalysts for oxygen evolution reaction: from targeted structures to active sites. Adv Mater 2024;36:e2306309.

30. Zhang J, Tang X, Hong Y, et al. Carbon-based single-atom catalysts in advanced oxidation reactions for water remediation: from materials to reaction pathways. Eco Environ Health 2023;2:47-60.

31. Wan C, Duan X, Huang Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv Energy Mater 2020;10:1903815.

32. Li Z, Ma R, Ju Q, et al. Spin engineering of single-site metal catalysts. Innovation 2022;3:100268.

33. Han J, Bian J, Sun C. Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research 2020;2020:9512763.

34. Lu B, Liu Q, Nichols F, et al. Oxygen reduction reaction catalyzed by carbon-supported platinum few-atom clusters: significant enhancement by doping of atomic cobalt. Research 2020;2020:9167829.

35. Shao Y, Yuan Q, Zhou J. Single-atom catalysts and dual-atom catalysts for CO2 electroreduction: competition or cooperation? Small 2023;19:e2303446.

36. Tang T, Wang Z, Guan J. Achievements and challenges of copper-based single-atom catalysts for the reduction of carbon dioxide to C2+ products. Exploration 2023;3:20230011.

37. Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater 2020;32:e2001848.

38. Li X, Chen Y, Zhan X, et al. Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. Innov Mater 2023;1:100014.

39. Li J, Chen S, Quan F, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020;6:885-901.

40. Wei X, Liu Y, Zhu X, et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv Mater 2023;35:e2300020.

41. Chen H, Zhang C, Sheng L, et al. Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. J Hazard Mater 2022;434:128892.

42. Wang L, Wang D, Li Y. Single-atom catalysis for carbon neutrality. Carbon Energy 2022;4:1021-79.

43. Wang Z, Liu S, Wang M, et al. In situ construction of metal-organic frameworks as smart channels for the effective electrocatalytic reduction of nitrate at ultralow concentrations to ammonia. ACS Catal 2023;13:9125-35.

44. Hu T, Wang C, Wang M, Li CM, Guo C. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal 2021;11:14417-27.

45. Zhao X, Jia X, He Y, et al. Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Appl Mater Today 2021;25:101206.

46. Zhao X, Li X, Zhang H, et al. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. J Hazard Mater 2022;424:127319.

47. Zhu T, Chen Q, Liao P, et al. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020;16:e2004526.

48. Zhao X, Geng Q, Dong F, et al. Boosting the selectivity and efficiency of nitrate reduction to ammonia with a single-atom Cu electrocatalyst. Chem Eng J 2023;466:143314.

49. Xue Y, Yu Q, Ma Q, et al. Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites. Environ Sci Technol 2022;56:14797-807.

50. Wang Y, Zhang W, Wen W, et al. Atomically dispersed unsaturated Cu-N3 sites on high-curvature hierarchically porous carbon nanotube for synergetic enhanced nitrate electroreduction to ammonia. Adv Funct Mater 2023;33:2302651.

51. Wang H, Yao Y, Zhan J, et al. P-modified single-atom Cu catalyst boosting electrocatalytic performance of NO3- reduction to NH3. ChemCatChem 2023;15:e202201633.

52. Li P, Liao L, Fang Z, Su G, Jin Z, Yu G. A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Proc Natl Acad Sci USA 2023;120:e2305489120.

53. Yang J, Qi H, Li A, et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J Am Chem Soc 2022;144:12062-71.

54. Nielsen SE. Ammonia synthesis: catalyst and technologies. In: Flank WH, Abraham MA, Matthews MA, editors. Innovations in industrial and engineering chemistry. Washington: American Chemical Society; 2008. pp. 15-39.

55. Yoshino H, Kawase Y. Kinetic modeling and simulation of zero-valent iron wastewater treatment process: simultaneous reduction of nitrate, hydrogen peroxide, and phosphate in semiconductor acidic wastewater. Ind Eng Chem Res 2013;52:17829-40.

56. Wu ZY, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun 2021;12:2870.

57. Song Q, Li M, Hou X, et al. Anchored Fe atoms for N=O bond activation to boost electrocatalytic nitrate reduction at low concentrations. Appl Catal B Environ 2022;317:121721.

58. Zhang W, Dong H, Zhou L, et al. Fe single-atom catalysts with pre-organized coordination structure for efficient electrochemical nitrate reduction to ammonia. Appl Catal B Environ 2022;317:121750.

59. Xu J, Zhang S, Liu H, et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew Chem Int Ed 2023;62:e202308044.

60. Liu F, Li J, An N, Huang J, Liu X, Li M. Highly active electroreduction of nitrates to ammonia over a zeolitic imidazolium framework-derived Fe single-atom catalyst with sulfur-modified asymmetric active centers. J Hazard Mater 2024;465:133484.

61. Wang Z, Liu S, Zhao X, et al. Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Mater Lett 2023;5:1018-26.

62. Zhao J, Ren X, Liu X, et al. Zn single atom on N-doped carbon: highly active and selective catalyst for electrochemical reduction of nitrate to ammonia. Chem Eng J 2023;452:139533.

63. Yang L, Wang C, Li Y, et al. Frustrated lewis pairs on Zr single atoms supported N-doped TiO2-x catalysts for electrochemical nitrate reduction to ammonia. Adv Funct Mater 2024:2401094.

64. Ajmal S, Kumar A, Mushtaq MA, et al. Uniting synergistic effect of single-Ni site and electric field of B- bridged-N for boosted electrocatalytic nitrate reduction to ammonia. Small 2024:e2310082.

65. Li J, Li M, An N, et al. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc Natl Acad Sci USA 2022;119:e2123450119.

66. Wang C, Markovic NM, Stamenkovic VR. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2012;2:891-8.

67. Li S, Dong M, Peng M, et al. Crystal-phase engineering of PdCu nanoalloys facilitates selective hydrodeoxygenation at room temperature. Innovation 2022;3:100189.

68. Zhang L, Dang Y, Zhou X, et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation 2021;2:100170.

69. Vandevyvere T, Sabbe MK, Mendes PS, Thybaut JW, Lauwaert J. NiCu-based catalysts for the low-temperature hydrodeoxygenation of anisole: Effect of the metal ratio on SiO2 and γ-Al2O3 supports. Green Carbon 2023;1:170-84.

70. Wang Y, Xu A, Wang Z, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J Am Chem Soc 2020;142:5702-8.

71. Du C, Lu S, Wang J, et al. Selectively reducing nitrate into NH3 in neutral media by PdCu single-atom alloy electrocatalysis. ACS Catal 2023;13:10560-9.

72. Liu H, Lang X, Zhu C, et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew Chem Int Ed 2022;61:e202202556.

73. Cai J, Wei Y, Cao A, et al. Electrocatalytic nitrate-to-ammonia conversion with ~100% faradaic efficiency via single-atom alloying. Appl Catal B Environ 2022;316:121683.

74. Yin H, Peng Y, Li J. Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst. Environ Sci Technol 2023;57:3134-44.

75. Zhang Y, Chen X, Wang W, Yin L, Crittenden JC. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl Catal B Environ 2022;310:121346.

76. Chen K, Ma Z, Li X, Kang J, Ma D, Chu K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv Funct Mater 2023;33:2209890.

77. Xie M, Tang S, Li Z, et al. Intermetallic single-atom alloy In-Pd bimetallene for neutral electrosynthesis of ammonia from nitrate. J Am Chem Soc 2023;145:13957-67.

78. Wu X, Nazemi M, Gupta S, et al. Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction. ACS Catal 2023;13:6804-12.

79. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chemical synthesis of single atomic site catalysts. Chem Rev 2020;120:11900-55.

80. Fei H, Dong J, Wan C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater 2018;30:e1802146.

81. Zhang L, Banis MN, Sun X. Single-atom catalysts by the atomic layer deposition technique. Natl Sci Rev 2018;5:628-30.

82. Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 2015;54:14031-5.

83. Ali H, Masar M, Guler AC, Urbanek M, Machovsky M, Kuritka I. Heterojunction-based photocatalytic nitrogen fixation: principles and current progress. Nanoscale Adv 2021;3:6358-72.

84. Zhao Y, Shi R, Bian X, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv Sci 2019;6:1802109.

85. Hodgetts RY, Kiryutin AS, Nichols P, et al. Refining universal procedures for ammonium quantification via rapid 1H NMR analysis for dinitrogen reduction studies. ACS Energy Lett 2020;5:736-41.

86. Li Z, Wang L, Cai Y, Zhang J, Zhu W. Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH. J Hazard Mater 2022;440:129828.

87. Wendimu G, Hussen A, Mohan BR. Wax screen-based fabrication of paper devices for the determination of iron in particulates of selected welding fumes in Addis Ababa, Ethiopia. Bull Chem Soc Eth 2024;38:563-76.

88. Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem Rev 2023;123:379-444.

89. Wang X, Wu X, Ma W, et al. Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc Natl Acad Sci USA 2023;120:e2217703120.

90. Liu X, Chen S, Wang H, et al. Lattice confined Ru single sites in hollow Co9S8 polyhedron triggering Co-S-Ru catalytic centers for rechargeable Zn-air battery. Nano Res 2023;16:6701-9.

91. Sun H, Sun L, Liao Y, et al. Atomically imaging single atom catalysts and their behaviors by scanning tunneling microscopy. EES Catal 2023;1:794-809.

92. Zhang L, Li Y, Zhang L, et al. Direct visualization of the evolution of a single-atomic cobalt catalyst from melting nanoparticles with carbon dissolution. Adv Sci 2022;9:e2200592.

93. Li X, Yang X, Zhang J, Huang Y, Liu B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal 2019;9:2521-31.

94. Zhang N, Zhang G, Shen P, Zhang H, Ma D, Chu K. Lewis acid Fe-V pairs promote nitrate electroreduction to ammonia. Adv Funct Mater 2023;33:2211537.

95. Song W, Yue L, Fan X, et al. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg Chem Front 2023;10:3489-514.

96. Xiang T, Liang Y, Zeng Y, et al. Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: mechanism, synthesis, characterization, application, and prospects. Small 2023;19:e2303732.

97. Wang S, Li L, Hui KS, et al. Non-noble single-atom alloy for electrocatalytic nitrate reduction using hierarchical high-throughput screening. Nano Energy 2023;113:108543.

98. Niu H, Zhang Z, Wang X, Wan X, Shao C, Guo Y. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv Funct Mater 2021;31:2008533.

99. Zhu S, Qin M, Chen L, et al. Theoretical investigation of electrocatalytic reduction of nitrates to ammonia on highly efficient and selective g-C2N monolayer-supported single transition-metal atoms. J Phys Chem Lett 2023;14:4185-91.

100. Lai J, Zhang Z, Yang X, et al. Opening the black box: Insights into the restructuring mechanism to steer catalytic performance. Innov Mater 2023;1:100020.

101. Bai X, Zhao X, Zhang Y, et al. Dynamic stability of copper single-atom catalysts under working conditions. J Am Chem Soc 2022;144:17140-8.

102. Zhang H, Liu G, Shi L, Ye J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater 2018;8:1701343.

103. Liberto G, Pacchioni G. Modeling single-atom catalysis. Adv Mater 2023;35:e2307150.

104. Burke K, Wagner LO. DFT in a nutshell. Int J of Quantum Chem 2013;113:96-101.

105. Wang Y, Qin X, Shao M. First-principles mechanistic study on nitrate reduction reactions on copper surfaces: effects of crystal facets and pH. J Catal 2021;400:62-70.

106. Tu X, Zhu X, Bo S, et al. A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew Chem Int Ed 2024;63:e202317087.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/