REFERENCES

1. Green MA, Ho-baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon 2014;8:506-14.

2. National Renewable Energy Laboratory. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed on 27 May 2024].

3. Park N, Grätzel M, Miyasaka T, Zhu K, Emery K. Towards stable and commercially available perovskite solar cells. Nat Energy 2016;1:16152.

4. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 2019;119:3418-51.

5. Tian J, Xue Q, Yao Q, Li N, Brabec CJ, Yip H. Inorganic halide perovskite solar cells: progress and challenges. Adv Energy Mater 2020;10:2000183.

6. Kye YH, Yu CJ, Jong UG, Chen Y, Walsh A. Critical role of water in defect aggregation and chemical degradation of perovskite solar cells. J Phys Chem Lett 2018;9:2196-201.

7. Wang K, Tong Y, Cao L, et al. Progress of inverted inorganic cesium lead halide perovskite solar cells. Cell Rep Phys Sci 2023;4:101726.

8. Eperon GE, Paternò GM, Sutton RJ, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A 2015;3:19688-95.

9. Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016;354:92-5.

10. Wang Z, Tian Q, Zhang H, et al. Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells. Angew Chem Int Ed 2023;62:e202305815.

11. Yan L, Huang H, Cui P, et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat Energy 2023;8:1158-67.

12. Zhang J, Hodes G, Jin Z, Liu SF. All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew Chem Int Ed 2019;58:15596-618.

13. Steele JA, Jin H, Dovgaliuk I, et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 2019;365:679-84.

14. Huang Y, Yin W, He Y. Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI 3. J Phys Chem C 2018;122:1345-50.

15. deQuilettes DW, Vorpahl SM, Stranks SD, et al. Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015;348:683-6.

16. Shao S, Abdu-aguye M, Sherkar TS, et al. The effect of the microstructure on trap-assisted recombination and light soaking phenomenon in hybrid perovskite solar cells. Adv Funct Mater 2016;26:8094-102.

17. Cappel UB, Svanström S, Lanzilotto V, et al. Partially reversible photoinduced chemical changes in a mixed-ion perovskite material for solar cells. ACS Appl Mater Interfaces 2017;9:34970-8.

18. Bella F, Griffini G, Correa-Baena JP, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016;354:203-6.

19. Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells. Nat Mater 2018;17:261-7.

20. Liang L, Li Z, Zhou F, et al. The humidity-insensitive fabrication of efficient CsPbI3 solar cells in ambient air. J Mater Chem A 2019;7:26776-84.

21. Li M, Wang S, Ma X, et al. Hydrogen-bonding-facilitated dimethylammonium extraction for stable and efficient CsPbI3 solar cells with environmentally benign processing. Joule 2023;7:2595-608.

22. Mali SS, Patil JV, Steele JA, Rondiya SR, Dzade NY, Hong CK. Implementing dopant-free hole-transporting layers and metal-incorporated CsPbI2Br for stable all-inorganic perovskite solar cells. ACS Energy Lett 2021;6:778-88.

23. Zhang X, Bai X, Wu H, et al. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew Chem Int Ed 2018;57:3337-42.

24. Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Ed 2015;54:8208-12.

25. Aristidou N, Eames C, Sanchez-Molina I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat Commun 2017;8:15218.

26. Tsvetkov DS, Mazurin MO, Sereda VV, Ivanov IL, Malyshkin DA, Zuev AY. Formation thermodynamics, stability, and decomposition pathways of CsPbX3 (X = Cl, Br, I) photovoltaic materials. J Phys Chem C 2020;124:4252-60.

27. Liu SC, Li Z, Yang Y, et al. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells. J Am Chem Soc 2019;141:18075-82.

28. Liang J, Zhao P, Wang C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J Am Chem Soc 2017;139:14009-12.

29. Jena AK, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3. Chem Mater 2018;30:6668-74.

30. Yang F, Hirotani D, Kapil G, et al. All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angew Chem Int Ed 2018;57:12745-9.

31. Mali SS, Patil JV, Hong CK. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells. Nano Lett 2019;19:6213-20.

32. Patil JV, Mali SS, Hong CK. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency. Solar RRL 2020;4:2000164.

33. Chen S, Zhang T, Liu X, et al. Lattice reconstruction of La-incorporated CsPbI2Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells. J Mater Chem C 2020;8:3351-8.

34. Patil JV, Mali SS, Park DW, Hong CK. Novel ytterbium-doped CsPbI2Br thin-films-based inorganic perovskite solar cells toward improved phase stability. Mater Today Chem 2021;22:100557.

35. Mali SS, Patil JV, Shinde PS, de Miguel G, Hong CK. Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter 2021;4:635-53.

36. Patil JV, Mali SS, Hong CK. Holmium rare earth metal ion incorporated and ambient-air processed all-inorganic γ-CsPbI2.5Br0.5 perovskite solar cells yielding high efficiency and stable performance. J Mater Chem A 2023;11:21312-21.

37. Xiang S, Fu Z, Li W, et al. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett 2018;3:1824-31.

38. Duan C, Cui J, Zhang M, et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv Energy Mater 2020;10:2000691.

39. Yue Y, Yang R, Zhang W, Cheng Q, Zhou H, Zhang Y. Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance. Angew Chem Int Ed 2024;63:e202315717.

40. Wang X, Ran X, Liu X, et al. Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew Chem Int Ed 2020;59:13354-61.

41. Saparbaev A, Zhang M, Kuvondikov V, et al. High-performance CsPbI3 perovskite solar cells without additives in air condition. Solar Energy 2021;228:405-12.

42. Wang T, Yang Q, Chen Y, et al. Stitching perovskite grains with perhydropoly(Silazane) anti-template-agent for high-efficiency and stable solar cells fabricated in ambient air. Energy Environ Mater 2023;6:e12554.

43. Luo P, Xia W, Zhou S, et al. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J Phys Chem Lett 2016;7:3603-8.

44. Wang Y, Liu X, Zhang T, et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew Chem Int Ed 2019;58:16691-6.

45. Chang X, Fang J, Fan Y, et al. Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy. Adv Mater 2020;32:e2001243.

46. Fu S, Li X, Wan J, Zhang W, Song W, Fang J. In situ stabilized CsPbI3 for air-fabricated inverted inorganic perovskite photovoltaics with wide humidity operating window. Adv Funct Mater 2022;32:2111116.

47. Fu S, Zhang W, Li X, Guan J, Song W, Fang J. Humidity-assisted chlorination with solid protection strategy for efficient air-fabricated inverted CsPbI3 perovskite solar cells. ACS Energy Lett 2021;6:3661-8.

48. Yang S, Wen J, Liu Z, et al. A key 2D intermediate phase for stable high-efficiency CsPbI2Br perovskite solar cells. Adv Energy Mater 2022;12:2103019.

49. Fu S, Sun N, Le J, et al. Tailoring defects regulation in air-fabricated CsPbI3 for efficient inverted all-inorganic perovskite solar cells with Voc of 1.225 V. ACS Appl Mater Interfaces 2022;14:30937-45.

50. Xu S, Kang C, Huang Z, et al. Dual-functional quantum dot seeding growth of high-quality air-processed CsPbI2Br film for carbon-based perovskite solar cells. Solar RRL 2022;6:2100989.

51. Lu C, Li X, Guo X, et al. Efficient inverted CsPbI3 perovskite solar cells fabricated in common air. Chem Eng J 2023;452:139495.

52. Wang J, Che Y, Duan Y et al. 21.15%-efficiency and stable γ -CsPbI3 perovskite solar cells enabled by an acyloin ligand. Adv Mater 2023;35:2210223.

53. Mali SS, Patil JV, Shao J, et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat Energy 2023;8:989-1001.

54. Chen R, Hui Y, Wu B, et al. Moisture-tolerant and high-quality α-CsPbI3 films for efficient and stable perovskite solar modules. J Mater Chem A 2020;8:9597-606.

55. Yoon SM, Min H, Kim JB, Kim G, Lee KS, Seok SI. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 2021;5:183-96.

56. Fu S, Le J, Guo X, et al. Polishing the lead-poor surface for efficient inverted CsPbI3 perovskite solar cells. Adv Mater 2022;34:e2205066.

57. Li T, Li W, Wang K, et al. Interface engineering with formamidinium salts for improving ambient-processed inverted CsPbI3 photovoltaic performance: intermediate- vs post-treatment. ACS Appl Mater Interfaces 2023;15:51350-9.

58. Guo X, Lu C, Zhang W, et al. In situ surface sulfidation of CsPbI3 for inverted perovskite solar cells. ACS Energy Lett 2024;9:329-35.

59. Qiu J, Mei X, Zhang M, et al. Dipolar chemical bridge induced CsPbI3 perovskite solar cells with 21.86 % efficiency. Angew Chem Int Ed 2024;63:e202401751.

60. Wang Y, Dar MI, Ono LK, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 2019;365:591-5.

61. Wang K, Su Z, Chen Y, et al. Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells. J Mater Sci Technol 2022;114:165-71.

62. Jeong W, Jang G, Ma S, et al. Unraveling the antisolvent bathing effect on CsPbI3 crystallization under ambient conditions. Adv Funct Mater 2022;32:2207342.

63. Mali SS, Patil JV, Rondiya SR, et al. Terbium-doped and dual-passivated γ-CsPb(I1-xBrx)3 inorganic perovskite solar cells with improved air thermal stability and high efficiency. Adv Mater 2022;34:e2203204.

64. Rico-yuson CA, Danwittayakul S, Kumar S, Hornyak GL, Bora T. Sequential dip-coating of CsPbBr3 perovskite films in ambient conditions and their photovoltaic performance. J Mater Sci 2022;57:10285-98.

65. Wang K, Gao C, Xu Z, et al. In-situ hot oxygen cleansing and passivation for all-inorganic perovskite solar cells deposited in ambient to breakthrough 19% efficiency. Adv Funct Mater 2021;31:2101568.

66. Du Y, Tian Q, Chang X, et al. Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells. Adv Mater 2022;34:e2106750.

67. Dong C, Han X, Zhao Y, Li J, Chang L, Zhao W. A green anti-solvent process for high performance carbon-based CsPbI2Br all-inorganic perovskite solar cell. Solar RRL 2018;2:1800139.

68. Wang Y, Wu J, Zhang P, et al. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 2017;39:616-25.

69. Xu W, Ji R, Liu P, et al. In situ-fabricated perovskite nanocrystals for deep-blue light-emitting diodes. J Phys Chem Lett 2020;11:10348-53.

70. Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater 2020;10:1902579.

71. Patil JV, Mali SS, Hong CK. Reducing defects of all-inorganic γ-CsPbI2Br thin films by ethylammonium bromide additives for efficient perovskite solar cells. ACS Appl Mater Interfaces 2022;14:25576-83.

72. Jiang Y, Xu T, Du H, et al. Organic-inorganic hybrid nature enables efficient and stable CsPbI3-based perovskite solar cells. Joule 2023;7:2905-22.

73. Bai S, Da P, Li C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019;571:245-50.

74. Yang D, Yang R, Ren X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater 2016;28:5206-13.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/