REFERENCES

1. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

2. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science 2019;366:eaan8285.

3. Xiao Y, Xu R, Xu L, Ding J, Huang J. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater 2022;1:100013.

4. Chen D, Lu R, Yu R, et al. Work-function-induced interfacial built-in electric fields in Os-OsSe2 Heterostructures for Active Acidic and Alkaline Hydrogen Evolution. Angew Chem Int Ed 2022;61:e202208642.

5. Deng J, Ren P, Deng D, Bao X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 2015;54:2100-4.

6. Zhu J, Guo Y, Liu F, et al. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media. Angew Chem Int Ed 2021;60:12328-34.

7. Pan F, Jin T, Yang W, et al. Theory-guided design of atomic Fe-Ni dual sites in N,P-co-doped C for boosting oxygen evolution reaction. Chem Catal 2021;1:734-45.

8. Liu S, Li C, Zachman MJ, et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat Energy 2022;7:652-63.

9. Wang X, Fu N, Liu JC, et al. Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the fabrication of a multisite CO2 reduction electrocatalyst. J Am Chem Soc 2022;144:23223-9.

10. Xue D, Xia H, Yan W, Zhang J, Mu S. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nanomicro Lett 2020;13:5.

11. Zhang Y, Gao P, Jiao F, et al. Chemistry of ketene transformation to gasoline catalyzed by H-SAPO-11. J Am Chem Soc 2022;144:18251-8.

12. Garrido-Barros P, Derosa J, Chalkley MJ, Peters JC. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature 2022;609:71-6.

13. Li Z, Deng Z, Ouyang L, et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: a highly efficient catalyst for nitrate electroreduction to ammonia. Nano Res 2022;15:8914-21.

14. Xia H, Zan L, Wei Y, et al. Catalytic effect of carbon-based electrode materials in energy storage devices. Sci China Mater 2022;65:3229-42.

15. Qing G, Ghazfar R, Jackowski ST, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev 2020;120:5437-516.

16. Zhou L, Chen L, Ding Z, et al. Enhancement of interfacial catalysis in a triphase reactor using oxygen nanocarriers. Nano Res 2021;14:172-6.

17. Liu M, Lei Z, Ke Q, et al. Regulation of hydrogen evolution performance of titanium oxide-carbon composites at high current density with a Ti-O hybrid orbital. Carbon Energy 2022;4:480-90.

18. Chen X, Qiao Z, Hou B, et al. Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Res 2021;14:466-72.

19. Zhang X, Zhu X, Bo S, et al. Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat Commun 2022;13:5337.

20. Wan X, Shui J. Exploring durable single-atom catalysts for proton exchange membrane fuel cells. ACS Energy Lett 2022;7:1696-705.

21. Hu J, Xu Q, Wang X, et al. Charge-transfer-regulated bimetal ferrocene-based organic frameworks for promoting electrocatalytic oxygen evolution. Carbon Energy 2023;5:e315.

22. Guo Y, Wang M, Zhu Q, Xiao D, Ma D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat Catal 2022;5:766-76.

23. Cheng N, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 2016;7:13638.

24. Kim J, Yoo JM, Lee HS, Sung Y, Hyeon T. Single-atom M-N-C catalysts for oxygen reduction electrocatalysis. Trends Chem 2021;3:779-94.

25. Tang X, Wei Y, Zhai W, et al. Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv Mater 2023;35:e2208942.

26. Song LN, Zhang W, Wang Y, et al. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat Commun 2020;11:2191.

27. Han L, Cheng H, Liu W, et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat Mater 2022;21:681-8.

28. Xia H, Qu G, Yin H, Zhang J. Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J Mater Chem A 2020;8:15358-72.

29. Tian Z, Zhang Y, Zhu J, Li Q, Liu T, Antonietti M. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Adv Energy Mater 2021;11:2102489.

30. Kumar K, Asset T, Li X, et al. Fe-N-C electrocatalysts’ durability: effects of single atoms’ mobility and clustering. ACS Catal 2021;11:484-94.

31. Patniboon T, Hansen HA. Acid-stable and active M-N-C catalysts for the oxygen reduction reaction: the role of local structure. ACS Catal 2021;11:13102-18.

32. Rojas-carbonell S, Artyushkova K, Serov A, Santoro C, Matanovic I, Atanassov P. Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal 2018;8:3041-53.

33. Wu Z, Shen J, Li C, et al. Mo2TiC2 MXene-supported Ru clusters for efficient photothermal reverse water-gas shift. ACS Nano 2022;17:1550-9.

34. Wang Y, Guo T, Tian Z, Bibi K, Zhang YZ, Alshareef HN. MXenes for energy harvesting. Adv Mater 2022;34:e2108560.

35. Liu H, Jiang L, Khan J, et al. Decorating single-atomic mn sites with FeMn clusters to boost oxygen reduction reaction. Angew Chem Int Ed 2023;62:e202214988.

36. Ye C, Zheng M, Li Z, et al. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew Chem Int Ed 2022;61:e202213366.

37. Yang L, Li G, Ma R, et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res 2021;14:2853-60.

38. Yin H, Xia H, Zhao S, Li K, Zhang J, Mu S. Atomic level dispersed metal-nitrogen-carbon catalyst toward oxygen reduction reaction: synthesis strategies and chemical environmental regulation. Energy Environ Mater 2021;4:5-18.

39. Zhao S, Yin H, Xia H, et al. The assembling principle and strategies of high-density atomically dispersed catalysts. Chem Eng J 2021;417:127917.

40. Wu Z, Zhao Y, Xiao W, et al. Metallic-bonded Pt-Co for atomically dispersed Pt in the Co4N Matrix as an efficient electrocatalyst for hydrogen generation. ACS Nano 2022;16:18038-47.

41. Yang Y, Yang Q, Yang Y, et al. Enhancing water oxidation of Ru single atoms via oxygen-coordination bonding with NiFe layered double hydroxide. ACS Catal 2023;13:2771-9.

42. Chen J, Huang B, Cao R, et al. Steering local electronic configuration of Fe-N-C-based coupling catalysts via ligand engineering for efficient oxygen electroreduction. Adv Funct Mater 2023;33:2209315.

43. Ou H, Li G, Ren W, et al. Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6. J Am Chem Soc 2022;144:22075-82.

44. Liu F, Xia Y, Xu W, et al. Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene. Angew Chem Int Ed 2021;60:19324-30.

45. Guo Y, Yuan P, Zhang J, et al. Co2P-CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv Funct Mater 2018;28:1805641.

46. Sun Q, Chen BWJ, Wang N, et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew Chem Int Ed 2020;59:20183-91.

47. Liang D, Wang Y, Chen M, et al. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl Catal B Environ 2023;322:122088.

48. Fang JY, Zheng QZ, Lou YY, et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat Commun 2022;13:7899.

49. Aitbekova A, Zhou C, Stone ML, et al. Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1,100 °C. Nat Mater 2022;21:1290-7.

50. Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551-7.

51. Zhao H, Yu R, Ma S, et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 2022;5:818-31.

52. Yuan C, Zeng P, Cheng C, et al. Boosting the rate performance of Li-S batteries via highly dispersed cobalt nanoparticles embedded into nitrogen-doped hierarchical porous carbon. CCS Chem 2022;4:2829-41.

53. Zhao Y, Pei Z, Lu XF, Luan D, Wang X, Lou XW. Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catal 2022;2:1480-93.

54. Su Y, Hao J, Liu X, Yang Y. Progress of atomic layer deposition and molecular layer deposition in the development of all-solid-state lithium batteries. Batteries Supercaps 2023;6:e202200359.

55. Wen Z, Zhang S, Liu Z, et al. Size-engineered noble metal nanoclusters synthesized by impregnation for size-dependent catalysis. Sci China Mater 2023;66:1417-26.

56. Jiang L, Luo X, Wang D. A review on system and materials for aqueous flexible metal-air batteries. Carbon Energy 2023;5:e284.

57. Zhao Y, Shi Z, Zhu Y, et al. Mechanism for one-pot synthesis of 0D-2D carbon materials in the bubbles inside molten salts. Adv Funct Mater 2022;32:2202381.

58. Hou S, Zhang A, Zhou Q, et al. Designing heterostructured FeP-CoP for oxygen evolution reaction: interface engineering to enhance electrocatalytic performance. Nano Res 2023;16:6601-7.

59. Xia H, Zan L, Qu G, et al. Evolution of a solid electrolyte interphase enabled by FeNX/C catalysts for sodium-ion storage. Energy Environ Sci 2022;15:771-9.

60. Xia H, Yuan P, Zan L, et al. Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Res 2022;15:7154-62.

61. Zhao B, Huang X, Ding Y, Bi Y. Bias-free solar-driven syngas production: a Fe2O3 photoanode featuring single-atom cobalt integrated with a silver-palladium cathode. Angew Chem Int Ed 2023;62:e202213067.

62. Ma Z, Liu S, Tang N, et al. Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal 2022;12:5595-604.

63. Xue D, Cheng J, Yuan P, et al. Boron-tethering and regulative electronic states around iridium species for hydrogen evolution. Adv Funct Mater 2022;32:2113191.

64. Yin Z, Yu J, Xie Z, et al. Hybrid catalyst coupling single-atom Ni and nanoscale cu for efficient CO2 electroreduction to ethylene. J Am Chem Soc 2022;144:20931-8.

65. Xiao F, Wang Y, Xu GL, et al. Fe-N-C boosts the stability of supported platinum nanoparticles for fuel cells. J Am Chem Soc 2022;144:20372-84.

66. Zhang X, Zhang M, Deng Y, et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021;589:396-401.

67. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

68. Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022;51:8923-56.

69. Zhao YX, Wen JH, Li P, et al. A “pre-division metal clusters” strategy to mediate efficient dual-active sites ORR catalyst for ultralong rechargeable Zn-air battery. Angew Chem Int Ed 2023;62:e202216950.

70. Han J, Liu R, Lin Z, Zi W. Stereodivergent construction of Csp3-Csp3 bonds bearing vicinal stereocenters by synergistic palladium and phase-transfer catalysis. Angew Chem Int Ed 2023;62:e202215714.

71. Ye Y, Cao J, Oblinsky DG, et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat Chem 2023;15:206-12.

72. Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 2013;113:2139-81.

73. Liu H, Lang X, Zhu C, et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew Chem Int Ed 2022;61:e202202556.

74. Ding S, He L, Fang L, et al. Carbon-nanotube-bridging strategy for integrating single Fe atoms and NiCo nanoparticles in a bifunctional oxygen electrocatalyst toward high-efficiency and long-life rechargeable zinc-air batteries. Adv Energy Mater 2022;12:2202984.

75. Guo W, Gao X, Zhu M, et al. A closely packed Pt1.5Ni1-x/Ni-N-C hybrid for relay catalysis towards oxygen reduction. Energy Environ Sci 2023;16:148-56.

76. Zhang L, Jang H, Wang Y, et al. Exploring the dominant role of atomic- and nano-ruthenium as active sites for hydrogen evolution reaction in both acidic and alkaline media. Adv Sci 2021;8:e2004516.

77. Su P, Pei W, Wang X, et al. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew Chem Int Ed 2021;60:16044-50.

78. Yang X, Wang Y, Wang X, et al. CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles. Angew Chem Int Ed 2021;60:26177-83.

79. Guo S, Su J, Luo H, et al. Boosting photocatalytic hydrogen evolution reaction by the improved mass flow and energy flow process based on ultrasound waves. ACS Catal 2023;13:296-307.

80. Wei P, Chen Y, Zhou T, et al. Manipulation of charge-transfer kinetics via Ti3C2Tx (T = -O) quantum dot and N-doped carbon dot coloading on CdS for photocatalytic hydrogen production. ACS Catal 2023;13:587-600.

81. Zhu J, Cao J, Cai G, et al. Non-trivial contribution of carbon hybridization in carbon-based substrates to electrocatalytic activities in Li-S batteries. Angew Chem Int Ed 2023;62:e202214351.

82. Wei H, Liu H, Yu L, et al. Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction. Nano Energy 2022;102:107704.

83. Zhang L, Ren X, Zhao X, et al. Synergetic charge transfer and spin selection in CO oxidation at neighboring magnetic single-atom catalyst sites. Nano Lett 2022;22:3744-50.

84. Huang H, Yu D, Hu F, et al. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew Chem Int Ed 2022;61:e202116068.

85. Chen M, Kong F, Yao H, et al. Dual metal-organic frameworks-derived Fe-atomic sites bounded to fine Fe/FexC nanoparticles for enhanced oxygen electroreduction. Chem Eng J 2023;453:139820.

86. Yao H, Wang X, Li K, et al. Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production. Appl Catal B Environ 2022;312:121378.

87. Bae S, Mahmood J, Jeon I, Baek J. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz 2020;5:43-56.

88. Hu Q, Li G, Huang X, et al. Electronic structure engineering of single atomic Ru by Ru nanoparticles to enable enhanced activity for alkaline water reduction. J Mater Chem A 2019;7:19531-8.

89. Yu Y, Xue D, Xia H, et al. Electron spin modulation engineering in oxygen-involved electrocatalysis. J Phys Condens Matter 2022;34:364002.

90. Tian Y, Cao H, Yang H, et al. Electron spin catalysis with graphene belts. Angew Chem Int Ed 2023;62:e202215295.

91. Chen W, Xia H, Guo K, et al. Atomically dispersed Fe-N4 sites and Fe3C particles catalyzing polysulfides conversion in Li-S batteries. Chem Res Chin Univ 2022;38:1232-8.

92. Qu G, Guo K, Dong J, et al. Tuning Fe-spin state of FeN4 structure by axial bonds as efficient catalyst in Li-S batteries. Energy Stor Mater 2023;55:490-7.

93. Yang G, Zhu J, Yuan P, et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat Commun 2021;12:1734.

94. Wei X, Song S, Cai W, et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023;9:181-97.

95. Liu Y, Liu X, Lv Z, et al. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew Chem Int Ed 2022;61:e202117617.

96. Yang J, Li WH, Tan S, et al. The electronic metal-support interaction directing the design of single atomic site catalysts: achieving high efficiency towards hydrogen evolution. Angew Chem Int Ed 2021;60:19085-91.

97. Yang J, Li W, Wang D, Li Y. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv Mater 2020;32:e2003300.

98. Hu P, Huang Z, Amghouz Z, et al. Electronic metal-support interactions in single-atom catalysts. Angew Chem Int Ed 2014;53:3418-21.

99. Liu P, Chen B, Liang C, et al. Tip-enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions. Adv Mater 2021;33:e2007377.

100. Khan MU, Wang L, Liu Z, et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew Chem Int Ed 2016;55:9548-52.

101. Yu J, Yin J, Li R, Ma Y, Fan Z. Interfacial electric field effect on electrochemical carbon dioxide reduction reaction. Chem Catal 2022;2:2229-52.

102. Liu W, Li X, Wang Y, et al. Multi-branched AgAuPt nanoparticles for efficient electrocatalytic hydrogen evolution: synergism of tip-enhanced electric field effect and local electric field effect. J Energy Chem 2023;81:339-48.

103. Wang L, Wang L, Zhang L, Liu H, Yang J. Perspective of p-block single-atom catalysts for electrocatalysis. Trends Chem 2022;4:1135-48.

104. Yan H, Xiang H, Liu J, et al. The factors dictating properties of atomically precise metal nanocluster electrocatalysts. Small 2022;18:e2200812.

105. Yang J, Li WH, Xu K, Tan S, Wang D, Li Y. Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew Chem Int Ed 2022;61:e202200366.

106. Zhou W, Jiang Z, Chen M, et al. Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution. Chem Eng J 2022;428:131210.

107. Xia H, Zan L, Yuan P, et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-Nx towards enhanced sodium ion storage. Angew Chem Int Ed 2023;62:e202218282.

108. Ma Q, Jin H, Zhu J, et al. Stabilizing Fe-N-C catalysts as model for oxygen reduction reaction. Adv Sci 2021;8:e2102209.

109. Chipman J. Thermodynamics and phase diagram of the Fe-C system. Metall Trans 1972;3:55-64.

110. Ao X, Zhang W, Li Z, et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019;13:11853-62.

111. Wan X, Liu Q, Liu J, et al. Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat Commun 2022;13:2963.

112. Xie S, Liu L, Lu Y, et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J Am Chem Soc 2022;144:21255-66.

113. Chen L, Zhang X, Chen A, Yao S, Hu X, Zhou Z. Targeted design of advanced electrocatalysts by machine learning. Chin J Catal 2022;43:11-32.

114. Hu X, Chen S, Chen L, et al. What is the real origin of the activity of Fe-N-C electrocatalysts in the O2 reduction reaction? Critical roles of coordinating pyrrolic N and axially adsorbing species. J Am Chem Soc 2022;144:18144-52.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/