REFERENCES

1. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev 2018;118:11433-56.

2. Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev 2020;120:13312-48.

3. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

4. Bieker P, Winter M. Was braucht man für eine super-batterie? Chemie Unserer Zeit 2016;50:26-33.

5. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104:4303-417.

6. Horstmann B, Shi J, Amine R, et al. Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ Sci 2021;14:5289-314.

7. Kühn SP, Pfeiffer F, Bela M, et al. Back to the basics: advanced understanding of the as-defined solid electrolyte interphase on lithium metal electrodes. J Power Sources 2022;549:232118.

8. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model. J Electrochem Soc 1979;126:2047-51.

9. Peled E, Menkin S. Review - SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19.

10. Jie Y, Ren X, Cao R, Cai W, Jiao S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv Funct Mater 2020;30:1910777.

11. Yang H, Guo C, Naveed A, et al. Recent progress and perspective on lithium metal anode protection. Energy Stor Mater 2018;14:199-221.

12. Xia L, Miao H, Zhang C, Chen GZ, Yuan J. Review - recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries. Energy Stor Mater 2021;38:542-70.

13. Yasin G, Arif M, Mehtab T, et al. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Stor Mater 2020;25:644-78.

14. Delaporte N, Wang Y, Zaghib K. Pre-treatments of lithium foil surface for improving the cycling life of Li metal batteries. Front Mater 2019;6:267.

15. Zhou H, Yu S, Liu H, Liu P. Protective coatings for lithium metal anodes: recent progress and future perspectives. J Power Sources 2020;450:227632.

16. Gao S, Sun F, Liu N, Yang H, Cao P. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries - a review. Mater Today 2020;40:140-59.

17. Kang D, Xiao M, Lemmon JP. Artificial solid-electrolyte interphase for lithium metal batteries. Batteries Supercaps 2021;4:445-55.

18. Li Y, Wang C, Gao R, Cao F, Ye H. Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Stor Mater 2021;38:262-75.

19. Zhan Y, Shi P, Zhang X, et al. The insights of lithium metal plating/stripping in porous hosts: progress and perspectives. Energy Technol 2021;9:2000700.

20. Cheng Y, Chen J, Chen Y, et al. Lithium host: advanced architecture components for lithium metal anode. Energy Stor Mater 2021;38:276-98.

21. Zhou Y. External pressure: an overlooked metric in evaluating next-generation battery performance. Curr Opin Electrochem 2022;31:100916.

22. Fang C, Lu B, Pawar G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat Energy 2021;6:987-94.

23. Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy 2020;5:561-8.

24. Adams BD, Zheng J, Ren X, Xu W, Zhang J. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv Energy Mater 2018;8:1702097.

25. Dai F, Cai M. Best practices in lithium battery cell preparation and evaluation. Commun Mater 2022;3:64-70.

26. Song W, Harlow J, Logan E, et al. A systematic study of electrolyte additives in single crystal and bimodal LiNi0.8Mn0.1Co0.1O2/graphite pouch cells. J Electrochem Soc 2021;168:090503.

27. Harlow JE, Ma X, Li J, et al. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. J Electrochem Soc 2019;166:A3031-44.

28. Sicklinger J, Metzger M, Beyer H, Pritzl D, Gasteiger HA. Ambient storage derived surface contamination of NCM811 and NCM111: performance implications and mitigation strategies. J Electrochem Soc 2019;166:A2322-35.

29. Li Y, Li Y, Sun Y, et al. Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments. Nano Lett 2017;17:5171-8.

30. Otto S, Moryson Y, Krauskopf T, et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer. Chem Mater 2021;33:859-67.

31. Otto S, Fuchs T, Moryson Y, et al. Storage of lithium metal: the role of the native passivation layer for the anode interface resistance in solid state batteries. ACS Appl Energy Mater 2021;4:12798-807.

32. Momma T, Nara H, Yamagami S, Tatsumi C, Osaka T. Effect of the atmosphere on chemical composition and electrochemical properties of solid electrolyte interface on electrodeposited Li metal. J Power Sources 2011;196:6483-7.

33. Bläubaum L, Röse P, Schmidt L, Krewer U. The effects of gas saturation of electrolytes on the performance and durability of lithium-ion batteries. ChemSusChem 2021;14:2943-51.

34. Stark JK, Ding Y, Kohl PA. Role of dissolved gas in ionic liquid electrolytes for secondary lithium metal batteries. J Phys Chem C 2013;117:4980-5.

35. Wang E, Dey S, Liu T, Menkin S, Grey CP. Effects of atmospheric gases on Li metal cyclability and solid-electrolyte interphase formation. ACS Energy Lett 2020;5:1088-94.

36. Haas R, Murat M, Weiss M, Janek J, Natan A, Schröder D. Understanding the transport of atmospheric gases in liquid electrolytes for lithium - air batteries. J Electrochem Soc 2021;168:070504.

37. Zhang Y, Wang W, Tang H, et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J Power Sources 2015;277:304-11.

38. Ding F, Xu W, Chen X, et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J Electrochem Soc 2013;160:A1894-901.

39. Becking J, Gröbmeyer A, Kolek M, et al. Lithium-metal foil surface modification: an effective method to improve the cycling performance of lithium-metal batteries. Adv Mater Interfaces 2017;4:1700166.

40. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648-52.

41. Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 1980;72:650-4.

42. Mclean AD, Chandler GS. Contracted gaussian basis sets for molecular calculations. I. second row atoms, Z = 11-18. J Chem Phys 1980;72:5639-48.

43. Allouche R. Gabedit - a graphical user interface for computational chemistry softwares. J Comput Chem 2010;32:174-82.

44. Curtiss LA, Redfern PC, Raghavachari K. Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 2007;127:124105-13.

45. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16. Wallingford CT; 2016. Available from: https://gaussian.com/ [Last accessed on 4 May 2023].

46. Betz J, Brinkmann J, Nölle R, et al. Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv Energy Mater 2019;9:1900574.

47. Kühn SP, Edström K, Winter M, Cekic-laskovic I. Face to face at the cathode electrolyte interphase: from interface features to interphase formation and dynamics. Adv Mater Interfaces 2022;9:2102078.

48. Bieker G, Winter M, Bieker P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 2015;17:8670-9.

49. Wood KN, Noked M, Dasgupta NP. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett 2017;2:664-72.

50. Jung R, Metzger M, Haering D, et al. Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries. J Electrochem Soc 2016;163:A1705-16.

51. Stolz L, Gaberšček M, Winter M, Kasnatscheew J. Different efforts but similar insights in battery R&D: electrochemical impedance spectroscopy vs galvanostatic (constant current) technique. Chem Mater 2022;34:10272-8.

52. Hobold GM, Lopez J, Guo R, et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat Energy 2021;6:951-60.

53. Ota H, Sakata Y, Otake Y, Shima K, Ue M, Yamaki J. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J Electrochem Soc 2004;151:A1778.

54. Nie M, Demeaux J, Young BT, et al. Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-ion batteries. J Electrochem Soc 2015;162:A7008-14.

55. Grugeon S, Jankowski P, Cailleu D, et al. Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. J Power Sources 2019;427:77-84.

56. Freunberger SA, Chen Y, Peng Z, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 2011;133:8040-7.

57. Bryantsev VS, Blanco M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2011;2:379-83.

58. Sinha A, Thomson M. The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures. Combust Flame 2004;136:548-56.

59. Atkinson R. Atmospheric reactions of alkoxy and β-hydroxyalkoxy radicals. Int J Chem Kinet 1997;29:99-111.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/