REFERENCES

1. Goodenough JB. Oxide-ion conductors by design. Nature 2000;404:821-3.

2. Nernst W. Electrolytic conductivity of solids at high temperatures. Zeitschrift fur Elektrochemie 1899;6:41-3.

3. Steele BCH, Heinzel A. Materials for fuel-cell technologies. Materials for Sustainable Energy. Co-Published with Macmillan Publishers Ltd, UK; 2010. p. 224-31.

4. Stambouli A, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 2002;6:433-55.

5. Duan C, Tong J, Shang M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015;349:1321-6.

6. Duan C, Kee RJ, Zhu H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018;557:217-22.

7. Ray ER. Westinghouse tubular SOFC technology. Available from: https://www.osti.gov/servlets/purl/7128507. [Last accessed on 3 Sep 2021].

8. Bruijn F. The current status of fuel cell technology for mobile and stationary applications. Green Chem 2005;7:132.

9. Yu J, Ran R, Zhong Y, Zhou W, Ni M, Shao Z. Advances in porous perovskites: synthesis and electrocatalytic performance in fuel cells and metal-air batteries. Energy Environ Mater 2020;3:121-45.

10. Brett DJ, Atkinson A, Brandon NP, Skinner SJ. Intermediate temperature solid oxide fuel cells. Chem Soc Rev 2008;37:1568-78.

11. Leah RT, Bone A, Hammer E, et al. Development progress on the ceres power steel cell technology platform: further progress towards commercialization. ECS Trans 2017;78:87-95.

12. Barrett S. Ceres, Weichai Power develop first range-extender bus prototype. Fuel Cells Bulletin 2019;10:4.

13. Mizutani Y. Current State of R&D on Micro Tubular Solid Oxide Fuel Cells in Japan. In: Kakaç S, Pramuanjaroenkij A, Vasiliev L, editors. Mini-Micro Fuel Cells. Dordrecht: Springer Netherlands; 2008. p. 407-18.

14. Chao CC, Hsu CM, Cui Y, Prinz FB. Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 2011;5:5692-6.

15. Swartwout R, Hoerantner MT, Bulović V. Scalable deposition methods for large-area production of perovskite thin films. Energy Environ Mater 2019;2:119-45.

16. Han GD, Bae K, Kang EH, Choi HJ, Shim JH. Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Letters 2020;5:1586-92.

17. Kwon C, Lee J, Kim K, Lee H, Lee J, Son J. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. J Power Sources 2012;210:178-83.

18. Schlupp MVF, Evans A, Martynczuk J, Prestat M. Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition. Adv Energy Mater 2014;4:1301383.

19. Zhu B, Raza R, Abbas G, Singh M. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv Funct Mater 2011;21:2465-9.

20. Zhu B, Lund P, Raza R, et al. A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2013;2:1179-85.

21. Zhu B, Huang Y, Fan L, et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 2016;19:156-64.

22. Meng Y, Mi Y, Xu F, et al. Low-temperature fuel cells using a composite of redox-stable perovskite oxide La0.7Sr0.3Cr0.5Fe0.5O3-δ and ionic conductor. J Power Sources 2017;366:259-64.

23. Dong X, Tian L, Li J, Zhao Y, Tian Y, Li Y. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ. J Power Sources 2014;249:270-6.

24. Leng Y, Chan S, Liu Q. Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Int J Hydrogen Energy 2008;33:3808-17.

25. Zhang Y, Knibbe R, Sunarso J, et al. Recent Progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv Mater 2017;29:1700132.

26. Singh K, Nowotny J, Thangadurai V. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. Chem Soc Rev 2013;42:1961-72.

27. Zhu B, Raza R, Qin H, Liu Q, Fan L. Fuel cells based on electrolyte and non-electrolyte separators. Energy Environ Sci 2011;4:2986.

28. Our choice from the recent literature. Nature Nanotech 2011;6:330.

29. Wang B, Wang Y, Fan L, et al. Preparation and characterization of Sm and Ca co-doped ceria-La0.6Sr0.4Co0.2Fe0.8O3-δ semiconductor-ionic composites for electrolyte-layer-free fuel cells. J Mater Chem A 2016;4:15426-36.

30. Meng Y, Wang X, Xia C, et al. High-performance SOFC based on a novel semiconductor-ionic SrFeO3-δ-Ce0.8Sm0.2O2-δ membrane. Int J Hydrogen Energy 2018;43:12697-704.

31. Deng H, Zhang W, Wang X, et al. An ionic conductor Ce0.8Sm0.2O2-δ (SDC) and semiconductor Sm0.5Sr0.5CoO3 (SSC) composite for high performance electrolyte-free fuel cell. Int J Hydrogen Energy 2017;42:22228-34.

32. Lan R, Tao S. Novel proton conductors in the layered oxide material LixlAl0.5Co0.5O2. Adv Energy Mater 2014;4:1301683.

33. Zhu B, Fan L, Deng H, et al. Corrigendum to “LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells” [J. Power Sources 316 (2016) 37–43]. J Power Sources 2016;316:37-43.

34. Zhang W, Cai Y, Wang B, et al. Mixed ionic-electronic conductor membrane based fuel cells by incorporating semiconductor Ni0.8Co0.15Al0.05LiO2-δ into the Ce0.8Sm0.2O2-δ-Na2CO3 electrolyte. Int J Hydrogen Energy 2016;41:15346-53.

35. Xia C, Qiao Z, Feng C, Kim JS, Wang B, Zhu B. Study on zinc oxide-based electrolytes in low-temperature solid oxide fuel cells. Materials (Basel) 2017;11:40.

36. Qiao Z, Xia C, Cai Y, et al. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J Power Sources 2018;392:33-40.

37. Dong W, Tong Y, Zhu B, et al. Semiconductor TiO2 thin film as an electrolyte for fuel cells. J Mater Chem A 2019;7:16728-34.

38. Chen G, Liu H, He Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte. J Mater Chem A 2019;7:9638-45.

39. Chen G, Zhu B, Deng H, et al. Advanced fuel cell based on perovskite la-SrTiO3 semiconductor as the electrolyte with superoxide-ion conduction. ACS Appl Mater Interfaces 2018;10:33179-86.

40. Wang B, Zhu B, Yun S, et al. Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells. NPG Asia Mater 2019:11.

41. Xing Y, Wu Y, Li L, et al. Proton shuttles in CeO2/CeO2-δ core-shell structure. ACS Energy Lett 2019;4:2601-7.

42. Xing Y, Hu E, Wang F, et al. Cubic silicon carbide/zinc oxide heterostructure fuel cells. Appl Phys Lett 2020;117:162105.

43. Xia C, Mi Y, Wang B, Lin B, Chen G, Zhu B. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat Commun 2019;10:1707.

44. Rauf S, Zhu B, Yousaf Shah MA, et al. Application of a triple-conducting heterostructure electrolyte of Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3-δ and Ca0.04Ce0.80Sm0.16O2-δ in a high-performance low-temperature solid oxide fuel cell. ACS Appl Mater Interfaces 2020;12:35071-80.

45. Rauf S, Zhu B, Shah MY, et al. Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3-δ semiconductor electrolyte for boosting solid oxide fuel cell performance. Renewable Energy 2021;172:336-49.

46. Wang G, Wu X, Cai Y, Ji Y, Yaqub A, Zhu B. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC). J Power Sources 2016;332:8-15.

47. Zhu B, Lund PD, Raza R, et al. Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv Energy Mater 2015;5:1401895.

48. Zhu B, Wang B, Wang Y, et al. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 2017;37:195-202.

49. Hu E, Jiang Z, Fan L, et al. Junction and energy band on novel semiconductor-based fuel cells. iScience 2021;24:102191.

50. Wang B, Cai Y, Xia C, et al. Semiconductor-ionic membrane of LaSrCoFe-oxide-doped ceria solid oxide fuel cells. Electrochimica Acta 2017;248:496-504.

51. Cai Y, Wang B, Wang Y, et al. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells. J Power Sources 2018;384:318-27.

52. Mushtaq N, Lu Y, Xia C, et al. Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructure. Applied Catalysis B: Environmental 2021;298:120503.

53. Akbar M, Jin B, Tu Z, et al. High-performing and stable non-doped ceria electrolyte with amorphous carbonate coating layer for low-temperature solid oxide fuel cells. Electrochimica Acta 2021;393:139067.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/