REFERENCES
1. Gong, Y.; Wang, J.; Wei, Z.; Zhang, P.; Li, H.; Wang, Y. Combination of carbon nitride and carbon nanotubes: synergistic catalysts for energy conversion. ChemSusChem 2014, 7, 2303-9.
2. Dai, L.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130-66.
3. George, C.; Ammann, M.; D’Anna, B.; Donaldson, D. J.; Nizkorodov, S. A. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 2015, 115, 4218-58.
4. Hussain, M. K.; Khalid, N.; Tanveer, M.; Kebaili, I.; Alrobei, H. Fabrication of CuO/MoO3 p-n heterojunction for enhanced dyes degradation and hydrogen production from water splitting. Int. J. Hydrogen. Energy. 2022, 47, 15491-504.
5. Bard, A. J.; Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141-5.
6. Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-9.
7. Tu, W.; Zhou, Y.; Zou, Z. Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. 2013, 23, 4996-5008.
8. Fan, W.; Zhang, Q.; Wang, Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 2013, 15, 2632-49.
9. Wondraczek, L.; Tyystjärvi, E.; Méndez-Ramos, J.; Müller, F. A.; Zhang, Q. Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis. Adv. Sci. 2015, 2, 1500218.
10. Kapilashrami, M.; Zhang, Y.; Liu, Y. S.; Hagfeldt, A.; Guo, J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 2014, 114, 9662-707.
11. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-614.
12. Pan, J.; Wang, B.; Shen, S.; Chen, L.; Yin, S. Introducing bidirectional axial coordination into BiVO4@metal phthalocyanine core–shell photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. Engl. 2023, 135, e202307246.
13. Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998-1013.
14. Zhang, H.; Liu, G.; Shi, L.; Liu, H.; Wang, T.; Ye, J. Engineering coordination polymers for photocatalysis. Nano. Energy. 2016, 22, 149-68.
15. Hussain, M. K.; Khalid, N.; Tanveer, M.; et al. In-situ fabrication of MoO3 hexagonal flowers decorated with Co3O4 microrods with enhanced photocatalytic activity and stability under visible light irradiation. Mater. Chem. Phys. 2023, 302, 127652.
16. Chen, G.; Waterhouse, G. I. N.; Shi, R.; et al. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. Int. Ed. Engl. 2019, 58, 17528-51.
17. Mustafa, A.; Lougou, B. G.; Shuai, Y.; Wang, Z.; Tan, H. Current technology development for CO2 utilization into solar fuels and chemicals: a review. J. Energy. Chem. 2020, 49, 96-123.
18. Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy. Mater. 2018, 8, 1701620.
19. Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656-65.
20. Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy. 2022, 7, 13-24.
21. Agosti, A.; Nakibli, Y.; Amirav, L.; Bergamini, G. Photosynthetic H2 generation and organic transformations with CdSe@CdS-Pt nanorods for highly efficient solar-to-chemical energy conversion. Nano. Energy. 2020, 70, 104510.
22. Xu, X.; Su, C.; Shao, Z. Fundamental understanding and application of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite in energy storage and conversion: past, present, and future. Energy. Fuels. 2021, 35, 13585-609.
23. Zhou, B.; Zhou, P.; Dong, W.; Mi, Z. Gallium nitride-based artificial photosynthesis integrated devices for solar hydrogen generation and carbon dioxide reduction. In: Varghese OK, Souza FL, editors. Conversion of water and CO2 to fuels using solar energy. Wiley; 2024. pp. 309-39.
24. Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051-85.
25. Franchi, D.; Amara, Z. Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis. ACS. Sustainable. Chem. Eng. 2020, 8, 15405-29.
26. Gisbertz, S.; Pieber, B. Heterogeneous photocatalysis in organic synthesis. ChemPhotoChem 2020, 4, 456-75.
27. Molinari, R.; Lavorato, C.; Argurio, P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. a review. Catal. Today. 2017, 281, 144-64.
28. Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green. Chem. 2016, 18, 5391-411.
29. Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B. Environ. 2014, 158-9, 382-90.
30. Huang, H.; Jin, Y.; Chai, Z.; et al. Surface charge-induced activation of Ni-loaded CdS for efficient and robust photocatalytic dehydrogenation of methanol. Appl. Catal. B. Environ. 2019, 257, 117869.
31. Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567-74.
32. Rahman, M. Z.; Raziq, F.; Zhang, H.; Gascon, J. Key strategies for enhancing H2 production in transition metal oxide based photocatalysts. Angew. Chem. Int. Ed. Engl. 2023, 135, e202305385.
33. Nishioka, S.; Osterloh, F. E.; Wang, X.; Mallouk, T. E.; Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods. Primers. 2023, 3, 226.
34. Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Solar. Energy. 2020, 211, 522-46.
35. Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109-25.
36. Miseki, Y.; Sayama, K. Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy. Mater. 2019, 9, 1801294.
37. Wang, Y.; Silveri, F.; Bayazit, M. K.; et al. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv. Energy. Mater. 2018, 8, 1801084.
38. Maeda, K.; Teramura, K.; Lu, D.; et al. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.
39. Yuan, Y. J.; Lu, H. W.; Yu, Z. T.; Zou, Z. G. Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. ChemSusChem 2015, 8, 4113-27.
40. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting - a critical review. Energy. Environ. Sci. 2015, 8, 731-59.
41. Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-33.
42. Zhang, N.; Qu, Y.; Pan, K.; Wang, G.; Li, Y. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano. Res. 2016, 9, 726-34.
43. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.
44. Yang, X.; Singh, D.; Ahuja, R. Recent advancements and future prospects in ultrathin 2D semiconductor-based photocatalysts for water splitting. Catalysts 2020, 10, 1111.
45. Zhong, S.; Xi, Y.; Wu, S.; Liu, Q.; Zhao, L.; Bai, S. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A. 2020, 8, 14863-94.
46. Zhang, Y.; Xia, B.; Ran, J.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy. Mater. 2020, 10, 1903879.
47. Chen, S.; Huang, D.; Xu, P.; et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? J. Mater. Chem. A. 2020, 8, 2286-322.
48. Tahir, M.; Asiri, A. M.; Nawaz, T. A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production. Int. J. Hydrogen. Energy. 2020, 45, 24544-57.
49. Wang, L.; Sasaki, T. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455-86.
50. Bai, S.; Jiang, W.; Li, Z.; Xiong, Y. Surface and interface engineering in photocatalysis. ChemNanoMat 2015, 1, 223-39.
51. Martin, D. J.; Liu, G.; Moniz, S. J.; et al. Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 2015, 44, 7808-28.
52. Alam, M.; Azam, H.; Khalid, N.; et al. Enhanced photocatalytic performance of Ag3PO4/Mn-ZnO nanocomposite for the degradation of tetracycline hydrochloride. Crystals 2022, 12, 1156.
53. Hussain, M. K.; Khalid, N.; Tanveer, M.; et al. Facile fabrication of Z-scheme ZnO/MoO3 heterojunction as an excellent visible-light responsive photocatalyst for the degradation of rhodamine B and alizarin yellow dyes. Opt. Mater. 2024, 148, 114794.
54. Khalid, N.; Hammad, A.; Tahir, M.; et al. Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 2019, 45, 21430-5.
55. Khalid, N. R.; Hussain, M. K.; Murtaza, G.; Ikram, M.; Ahmad, M.; Hammad, A. A novel Ag2O/Fe–TiO2 photocatalyst for CO2 conversion into methane under visible light. J. Inorg. Organomet. Polym. 2019, 29, 1288-96.
56. Banisharif, A.; Khodadadi, A. A.; Mortazavi, Y.; et al. Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: experimental and computational studies. Appl. Catal. B. Environ. 2015, 165, 209-21.
57. Hussain, M. K.; Khalid, N.; Tahir, M.; Tanveer, M.; Iqbal, T.; Liaqat, M. Enhanced visible light-driven photocatalytic activity and stability of novel ternary ZnO/CuO/MoO3 nanorods for the degradation of rhodamine B and alizarin yellow. Mater. Sci. Semicond. Process. 2023, 155, 107261.
58. Zhu, D.; Zhou, Q. Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Appl. Catal. B. Environ. 2020, 268, 118426.
59. He, W.; Sun, Y.; Jiang, G.; Huang, H.; Zhang, X.; Dong, F. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway. Appl. Catal. B. Environ. 2018, 232, 340-7.
60. Tanveer, M.; Cheema, H. H.; Nabi, G.; Ali, A. R.; Hussain, M. K.; Qadeer, M. A novel composite (BiVO4/TiS2) presenting an excellent Z-scheme photocatalytic degradation for Rhodamine B dye under the visible light irradiation. J. Lumin. 2024, 271, 120585.
61. Tayebi, M.; Lee, B. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy. Rev. 2019, 111, 332-43.
62. Gurylev, V. A review on the development and advancement of Ta2O5 as a promising photocatalyst. Mater. Today. Sustain. 2022, 18, 100131.
63. Liu, W.; Liao, M.; Huang, S.; Reyes, Y. I. A.; Tiffany, C. H.; Perng, T. Formation and characterization of gray Ta2O5 and its enhanced photocatalytic hydrogen generation activity. Int. J. Hydrogen. Energy. 2020, 45, 16560-8.
64. Arunachalam, P.; Nagai, K.; Amer, M. S.; Ghanem, M. A.; Ramalingam, R. J.; Al-Mayouf, A. M. Recent developments in the use of heterogeneous semiconductor photocatalyst based materials for a visible-light-induced water-splitting system - a brief review. Catalysts 2021, 11, 160.
65. Qadeer M, Khalid Hussain M, Tanveer M, Munawar S, Nabi G, Henaish A. Sol-gel extended hydrothermal synthesis of BiFeO3 nano-beads for excellent photocatalytic and photo-electrochemical properties under natural light irradiation. Inorg. Chem. Commun. 2023, 158, 111617.
66. Zhao, Y.; Liu, W.; Liu, P.; et al. In situ photodeposition of Au nanoparticle plasma: enhanced defect-state g-C3N4 photocatalytic hydrogen evolution. Cryst. Growth. Des. 2024, 24, 5794-805.
67. Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy. Environ. Sci. 2018, 11, 1362-91.
68. Sun, Y.; Cheng, H.; Gao, S.; et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed. Engl. 2012, 124, 8857-61.
69. Wang, B.; Wang, Y.; Lei, Y.; et al. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano. Res. 2016, 9, 886-98.
70. Li, B.; Hu, Y.; Shen, Z.; et al. Photocatalysis driven by near-infrared light: materials design and engineering for environmentally friendly photoreactions. ACS. EST. Eng. 2021, 1, 947-64.
71. Tan, L.; Ong, W.; Chai, S.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B. Environ. 2015, 179, 160-70.
72. Tan, L.; Ong, W.; Chai, S.; Mohamed, A. R. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: importance of annealing temperature on the photoactivity toward reduction of carbon dioxide. Chem. Eng. J. 2016, 283, 1254-63.
73. Rashid, R.; Shafiq, I.; Gilani, M. R. H. S.; et al. Advancements in TiO2-based photocatalysis for environmental remediation: strategies for enhancing visible-light-driven activity. Chemosphere 2024, 349, 140703.
74. Jiang, A.; Guo, H.; Yu, S.; et al. Dual charge-accepting engineering modified AgIn5S8/CdS quantum dots for efficient photocatalytic hydrogen evolution overall H2S splitting. Appl. Catal. B. Environ. 2023, 332, 122747.
75. Jeon, T. H.; Koo, M. S.; Kim, H.; Choi, W. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS. Catal. 2018, 8, 11542-63.
77. Dashtian, K.; Shahsavarifar, S.; Usman, M.; et al. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting. Coord. Chem. Rev. 2024, 504, 215644.
78. Kampouri, S.; Stylianou, K. C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS. Catal. 2019, 9, 4247-70.
79. Sun, W.; Zheng, Y.; Zhu, J. A “win-win” photocatalysis: coupling hydrogen production with the synthesis of high value-added organic chemicals. Mater. Today. Sustain. 2023, 23, 100465.
80. Schrauzer, G. N.; Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189-93.
81. Mills, A.; Le, H. S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A. Chem. 1997, 108, 1-35.
82. Kampouri, S.; Ireland, C. P.; Valizadeh, B.; et al. Mixed-phase MOF-derived titanium dioxide for photocatalytic hydrogen evolution: the impact of the templated morphology. ACS. Appl. Energy. Mater. 2018, 1, 6541-8.
83. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919-85.
84. Xie, S.; Shen, Z.; Deng, J.; et al. Visible light-driven C-H activation and C-C coupling of methanol into ethylene glycol. Nat. Commun. 2018, 9, 1181.
85. Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.
86. Chen, Z. H.; Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst. Res. Chem. Intermed. 2022, 48, 1-12.
87. Liu, H.; Xu, C.; Li, D.; Jiang, H. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. Int. Ed. Engl. 2018, 130, 5477-81.
88. Luo, N.; Montini, T.; Zhang, J.; et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat. Energy. 2019, 4, 575-84.
89. Zhang, X.; Liu, T.; Zhao, F.; Zhang, N.; Wang, Y. In-situ-formed Cd and Ag2S decorated CdS photocatalyst with boosted charge carrier spatial separation for enhancing UV-vis-NIR photocatalytic hydrogen evolution. Appl. Catal. B. Environ. 2021, 298, 120620.
90. Naseri, A.; Asghari, S. G.; Samadi, M.; Yousefi, M.; Ebrahimi, M.; Moshfegh, A. Z. Recent advances on dual-functional photocatalytic systems for combined removal of hazardous water pollutants and energy generation. Res. Chem. Intermed. 2022, 48, 911-33.
91. Zhu, T.; Ye, X.; Zhang, Q.; Hui, Z.; Wang, X.; Chen, S. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid. J. Hazard. Mater. 2019, 367, 277-85.
92. Zhang, S.; Wang, K.; Li, F.; Ho, S. Structure-mechanism relationship for enhancing photocatalytic H2 production. Int. J. Hydrogen. Energy. 2022, 47, 37517-30.
93. Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-70.
94. Rahman, M. Z.; Edvinsson, T.; Gascon, J. Hole utilization in solar hydrogen production. Nat. Rev. Chem. 2022, 6, 243-58.
95. Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-812.
96. Zhou, P.; Navid, I. A.; Ma, Y.; et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70.
97. Liu, S.; Lin, P.; Wu, M.; et al. Organic dyes with multi-branched structures for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. Appl. Catal. B. Environ. 2022, 309, 121257.
98. Yang, Y.; Tan, H.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Near-infrared-responsive photocatalysts. Small. Methods. 2021, 5, e2001042.
99. Wang, T.; Tao, X.; Li, X.; Zhang, K.; Liu, S.; Li, B. Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small 2021, 17, e2006255.
100. Rusinque, B.; Escobedo, S.; de, L. H. Hydrogen production via Pd-TiO2 photocatalytic water splitting under near-UV and visible light: analysis of the reaction mechanism. Catalysts 2021, 11, 405.
101. Lyubina, T. P.; Markovskaya, D. V.; Kozlova, E. A.; Parmon, V. N. Photocatalytic hydrogen evolution from aqueous solutions of glycerol under visible light irradiation. Int. J. Hydrogen. Energy. 2013, 38, 14172-9.
102. Qi, M.; Li, Y.; Anpo, M.; Tang, Z.; Xu, Y. Efficient photoredox-mediated C–C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots. ACS. Catal. 2020, 10, 14327-35.
103. Jia, Q.; Zhang, S.; Jia, X.; Dong, X.; Gao, Z.; Gu, Q. Photocatalytic coupled redox cycle for two organic transformations over Pd/carbon nitride composites. Catal. Sci. Technol. 2019, 9, 5077-89.
104. Li, X.; Wang, T.; Zheng, Z.; Yang, Q.; Li, C.; Li, B. Pd modified defective HNb3O8 with dual active sites for photocatalytic coproduction of hydrogen fuel and value-added chemicals. Appl. Catal. B. Environ. 2021, 296, 120381.
105. Pomilla, F.; García-lópez, E.; Marcì, G.; Palmisano, L.; Parrino, F. Heterogeneous photocatalytic materials for sustainable formation of high-value chemicals in green solvents. Mater. Today. Sustain. 2021, 13, 100071.
106. Changotra, R.; Ray, A. K.; He, Q. Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: a comparative and perspective review. Adv. Colloid. Interface. Sci. 2022, 309, 102793.
107. Liu, J.; Guðmundsson, A.; Bäckvall, J. E. Efficient aerobic oxidation of organic molecules by multistep electron transfer. Angew. Chem. Int. Ed. Engl. 2021, 60, 15686-704.
108. Klibanov, A. M. Asymmetric enzymatic oxidoreductions in organic solvents. Curr. Opin. Biotechnol. 2003, 14, 427-31.
109. Yadav, M.; Joshi, C.; Paritosh, K.; et al. Organic waste conversion through anaerobic digestion: a critical insight into the metabolic pathways and microbial interactions. Metab. Eng. 2022, 69, 323-37.
110. Caudillo-Flores, U.; Fuentes-Moyado, S.; Fernández-García, M.; Kubacka, A. Effect of niobium on the performance of Pd-TiO2 photocatalysts for hydrogen production. Catal. Today. 2023, 419, 114147.
111. Yan, Z.; Yin, K.; Xu, M.; et al. Photocatalysis for synergistic water remediation and H2 production: a review. Chem. Eng. J. 2023, 472, 145066.
112. Khatami, M.; Iravani, S. Green and eco-friendly synthesis of nanophotocatalysts: an overview. Comments. Inorg. Chem. 2021, 41, 133-87.
113. Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F.; Zhang, S. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomater. 2012, 2012, 548389.
114. Saravanan, A.; Kumar, P. S.; Hemavathy, R. V.; et al. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: challenges and future perspectives. Chemosphere 2022, 307, 135713.
115. Kalirajan, C.; Dukle, A.; Nathanael, A. J.; Oh, T. H.; Manivasagam, G. A critical review on polymeric biomaterials for biomedical applications. Polymers 2021, 13, 3015.
116. Bokov, D.; Turki, J. A.; Chupradit, S.; et al. Nanomaterial by sol-gel method: synthesis and application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014.
117. Esposito, S. “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 2019, 12, 668.
118. Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels 2021, 7, 275.
119. Komarneni, S.; Roy, R.; Li, Q. Microwave-hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 1992, 27, 1393-405.
120. Hussain, M. K.; Khalid, N. Surfactant-assisted synthesis of MoO3 nanorods and its application in photocatalytic degradation of different dyes in aqueous environment. J. Mol. Liq. 2022, 346, 117871.
121. Fu, Q.; Cao, C.; Zhu, H. A solvothermal synthetic route to prepare polycrystalline carbon nitride. Chem. Phys. Lett. 1999, 314, 223-6.
122. Walton, R. I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002, 31, 230-8.
123. Khater, G. A.; Nabawy, B. S.; El-Kheshen, A. A.; Abdel, L. M. A.; Farag, M. M. Use of arc furnace slag and ceramic sludge for the production of lightweight and highly porous ceramic materials. Materials 2022, 15, 1112.
125. Otitoju T, Ugochukwu Okoye P, Chen G, Li Y, Onyeka Okoye M, Li S. Advanced ceramic components: materials, fabrication, and applications. J. Ind. Eng. Chem. 2020, 85, 34-65.
126. Schwarz, J. A.; Contescu, C.; Contescu, A. Methods for preparation of catalytic materials. Chem. Rev. 1995, 95, 477-510.
127. Shukla, A.; Singh, S. C.; Bhardwaj, A.; et al. Calcination temperature induced structural, optical and magnetic transformations in titanium ferrite nanoparticles. Reactions 2022, 3, 224-32.
128. Bogdanović, X.; Hinrichs, W. Influence of temperature during crystallization setup on precipitate formation and crystal shape of a metalloendopeptidase. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 2011, 67, 421-3.
129. Theiss, F. L.; Ayoko, G. A.; Frost, R. L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods - a review. Appl. Surf. Sci. 2016, 383, 200-13.
130. Dikshit, P.; Kumar, J.; Das, A.; et al. Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 2021, 11, 902.
131. Li, X.; Xu, H.; Chen, Z.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 2011, 1-16.
132. Dridi, S.; Bitri, N.; Mahjoubi, S.; Chaabouni, F.; Ly, I. One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications. J. Mater. Sci. Mater. Electron. 2020, 31, 7193-9.
133. Mazzotta, A.; Carlotti, M.; Mattoli, V. Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Mater. Adv. 2021, 2, 1787-820.
134. Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. A ZnTa2O6 photocatalyst synthesized via solid state reaction for conversion of CO2 into CO in water. Catal. Sci. Technol. 2016, 6, 4978-85.
135. Bouddouch, A.; Amaterz, E.; Bakiz, B.; et al. Phase transformation, photocatalytic and photoluminescent properties of BiPO4 catalysts prepared by solid-state reaction: degradation of rhodamine B. Minerals 2021, 11, 1007.
136. Mazumdar, S. C.; Datta, S.; Alam, F. Structural, magnetic and transport properties of Gd and Cu Co-doped BiFeO3 multiferroics. J. Appl. Mathemat. Phys. 2022, 10, 2026-39.
137. Zhao, W.; Luo, L.; Cong, M.; et al. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat. Commun. 2024, 15, 6482.
138. Khalid, N. R.; Arshad, A.; Tahir, M. B.; Hussain, M. K. Fabrication of p–n heterojunction Ag2O@Ce2O nanocomposites make enables to improve photocatalytic activity under visible light. Appl. Nanosci. 2021, 11, 199-206.
139. Choudhary, R. K.; Kumaraswamy, G. N.; Baitha, R.; et al. Synthesis of BNiO3 nanocomposites for photocatalytic hydrogen production applications. J. Inst. Eng. India. Ser. D.2024.
140. Thakur, A.; Manisha; Kumar, I.; Sharma, U. Visible light-induced functionalization of C−H bonds: opening of new avenues in organic synthesis. Asian. J. Org. Chem. 2022, 11, e202100804.
141. Shang, F. K.; Qi, M. Y.; Tan, C. L.; Tang, Z. R.; Xu, Y. J. Nanoscale assembly of CdS/BiVO4 hybrids for coupling selective fine chemical synthesis and hydrogen production under visible light. ACS. Phys. Chem. Au. 2022, 2, 216-24.
142. Luo, J.; Wang, M.; Chen, L.; Shi, J. Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution. J. Energy. Chem. 2022, 66, 52-60.
143. Pang, Y.; Uddin, M. N.; Chen, W.; et al. Colloidal single-layer photocatalysts for methanol-storable solar H2 fuel. Adv. Mater. 2019, 31, e1905540.
144. Liu, Z.; Yin, Z.; Cox, C.; et al. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts. Sci. Adv. 2016, 2, e1501425.
145. Cui, W.; Feng, L.; Xu, C.; Lü, S.; Qiu, F. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film. Catal. Commun. 2004, 5, 533-6.
146. Gazsi, A.; Schubert, G.; Bánsági, T.; Solymosi, F. Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2. J. Photoch. Photobio. A. 2013, 271, 45-55.
147. Uddin, N.; Langley, J.; Zhang, C.; et al. Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. Appl. Catal. B. Environ. 2021, 292, 120212.
148. Tan, H.; Kong, P.; Liu, M.; Gu, X.; Zheng, Z. Enhanced photocatalytic hydrogen production from aqueous-phase methanol reforming over cyano-carboxylic bifunctionally-modified carbon nitride. Chem. Commun. 2019, 55, 12503-6.
149. Zhang, J.; Toe, C. Y.; Kumar, P.; Scott, J.; Amal, R. Engineering defects in TiO2 for the simultaneous production of hydrogen and organic products. Appl. Catal. B. Environ. 2023, 333, 122765.
150. Tahir, M. Ni/MMT-promoted TiO2 nanocatalyst for dynamic photocatalytic H2 and hydrocarbons production from ethanol-water mixture under UV-light. Int. J. Hydrogen. Energy. 2017, 42, 28309-26.
151. Zhang, X.; Luo, L.; Yun, R.; Pu, M.; Zhang, B.; Xiang, X. Increasing the activity and selectivity of TiO2-supported Au catalysts for renewable hydrogen generation from ethanol photoreforming by engineering Ti3+ defects. ACS. Sustainable. Chem. Eng. 2019, 7, 13856-64.
152. Li, P.; Yan, X.; Gao, S.; Cao, R. Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal–organic framework composites. Chem. Eng. J. 2021, 421, 129870.
153. Jiang, D.; Chen, X.; Zhang, Z.; et al. Highly efficient simultaneous hydrogen evolution and benzaldehyde production using cadmium sulfide nanorods decorated with small cobalt nanoparticles under visible light. J. Catal. 2018, 357, 147-53.
154. Tayyab, M.; Liu, Y.; Min, S.; et al. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin. J. Catal. 2022, 43, 1165-75.
155. Zhang, Q.; Du, C.; Zhao, Q.; Zhou, C.; Yang, S. Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature. J. Taiwan. Inst. Chem. E. 2019, 102, 182-9.
156. Fu, X.; Leung, D. Y.; Wang, X.; Xue, W.; Fu, X. Photocatalytic reforming of ethanol to H2 and CH4 over ZnSn(OH)6 nanocubes. Int. J. Hydrogen. Energy. 2011, 36, 1524-30.
157. Liu, M.; Qiao, L.; Dong, B.; et al. Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Appl. Catal. B. Environ. 2020, 273, 119066.
158. Zhang, F.; Li, J.; Wang, H.; et al. Realizing synergistic effect of electronic modulation and nanostructure engineering over graphitic carbon nitride for highly efficient visible-light H2 production coupled with benzyl alcohol oxidation. Appl. Catal. B. Environ. 2020, 269, 118772.
159. Lin, Q.; Li, Y.; Qi, M.; et al. Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4. Appl. Catal. B. Environ. 2020, 271, 118946.