REFERENCES
1. Mu, Y.; Williams, P. T. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: a review. Chemosphere 2022, 308, 136481.
2. Mangotra, A.; Singh, S. K. Volatile organic compounds: a threat to the environment and health hazards to living organisms - a review. J. Biotechnol. 2024, 382, 51-69.
3. Siu, B.; Chowdhury, A. R.; Yan, Z.; Humphrey, S. M.; Hutter, T. Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coord. Chem. Rev. 2023, 485, 215119.
4. Sheng, Y.; Wang, M.; Dong, Q. Gas-particle two-phase adsorption of toluene and ultrafine particles on activated carbon studied by molecular simulation. Sci. Total. Environ. 2023, 891, 164591.
5. Huang, S.; Deng, W.; Zhang, L.; et al. Adsorptive properties in toluene removal over hierarchical zeolites. Micropor. Mesopor. Mat. 2020, 302, 110204.
6. Bal’zhinimaev, B. S.; Paukshtis, E. A.; Toktarev, A. V.; et al. Effect of water on toluene adsorption over high silica zeolites. Micropor. Mesopor. Mat. 2019, 277, 70-7.
7. Wang, R.; Luan, X.; Yaseen, M.; et al. Swellable array strategy based on designed flexible double hypercross-linked polymers for synergistic adsorption of toluene and formaldehyde. Environ. Sci. Technol. 2023, 57, 6682-94.
8. Wu, P.; Jin, X.; Qiu, Y.; Ye, D. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ. Sci. Technol. 2021, 55, 4268-86.
9. Li, A.; Zhang, Q.; Zhao, S.; et al. A dual plasmonic core - shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement. Nano. Res. 2022, 15, 7071-80.
10. Luo, Y.; Chi, Z.; Zhang, J.; Tian, B. Photothermocatalytic system designed by facet-heterojunction to enhance the synergistic effect of toluene oxidation. ChemCatChem 2022, 14, e202101958.
11. Zhang, Y.; Wu, M.; Wang, Y.; et al. Fluorinated TiO2 coupling with α-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation. Appl. Catal. B. Environ. 2021, 280, 119388.
12. Stucchi, M.; Bianchi, C.; Pirola, C.; et al. Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: a way to enhance its photocatalytic activity under visible light. Appl. Catal. B. Environ. 2015, 178, 124-32.
13. Zhang, L.; Peng, Y.; Zhang, J.; Chen, L.; Meng, X.; Xiao, F. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chinese. J. Catal. 2016, 37, 800-9.
14. Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl. Catal. B. Environ. 2021, 281, 119447.
15. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471-568.
16. Vandenbroucke, A. M.; Morent, R.; De, G. N.; Leys, C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30-54.
17. Chen, H. L.; Lee, H. M.; Chen, S. H.; Chang, M. B.; Yu, S. J.; Li, S. N. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ. Sci. Technol. 2009, 43, 2216-27.
18. Chung, W.; Mei, D.; Tu, X.; Chang, M. Removal of VOCs from gas streams via plasma and catalysis. Catal. Rev. 2019, 61, 270-331.
19. Lapa, H. M.; Martins, L. M. D. R. S. Toluene oxidation: CO2 vs benzaldehyde: current status and future perspectives. ACS. Omega. 2024, 9, 26780-804.
20. Loch, C.; Reusch, H.; Ruge, I.; et al. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages. Food. Chem. 2016, 206, 74-7.
21. Kesavan, L.; Tiruvalam, R.; Ab, R. M. H.; et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195-9.
22. Huang, X. Q.; Li, R.; Fu, J.; Dudareva, N. A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants. Nat. Commun. 2022, 13, 1352.
23. Li, H.; Meng, Y.; Shu, C.; Li, X.; Kiss, A. A.; Gao, X. Innovative reactive distillation process for the sustainable synthesis of natural benzaldehyde. ACS. Sustain. Chem. Eng. 2018, 6, 14114-24.
24. Zhu, D.; Hai, J.; Wang, L.; Long, X. A study on the oxidation of toluene to benzaldehyde by air catalyzed by polyoxometalate loaded on activated carbon. Mol. Catal. 2023, 551, 113626.
25. Huang, H.; Fan, H.; Ge, Y.; et al. Solvent-free oxidation of toluene to benzaldehyde using electron-rich Au clusters confined in silicalite-1. Chem. Eng. J. 2023, 458, 141446.
26. Wu, X.; Deng, Z.; Yan, J.; Zhang, F.; Zhang, Z. Effect of acetic anhydride on the oxidation of toluene to benzaldehyde with metal/bromide catalysts. Ind. Eng. Chem. Res. 2014, 53, 14601-6.
27. Cao, X.; Han, T.; Peng, Q.; Chen, C.; Li, Y. Modifications of heterogeneous photocatalysts for hydrocarbon C-H bond activation and selective conversion. Chem. Commun. 2020, 56, 13918-32.
28. Chengula, P. J.; Charles, H.; Pawar, R. C.; Lee, C. S. Current trends on dry photocatalytic oxidation technology for BTX removal: viable light sources and highly efficient photocatalysts. Chemosphere 2024, 351, 141197.
29. Chen, R.; Li, J.; Wang, H.; et al. Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition. J. Mater. Chem. A. 2021, 9, 20184-210.
30. Yang, Y.; Zhao, S.; Cui, L.; et al. Recent advancement and future challenges of photothermal catalysis for VOCs elimination: from catalyst design to applications. Green. Energy. Environ. 2023, 8, 654-72.
31. Ge, H.; Chen, G.; Yuan, Q.; Li, H. Gas phase partial oxidation of toluene over modified V2O5/TiO2 catalysts in a microreactor. Chem. Eng. J. 2007, 127, 39-46.
32. Genuino, H. C.; Dharmarathna, S.; Njagi, E. C.; Mei, M. C.; Suib, S. L. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. J. Phys. Chem. C. 2012, 116, 12066-78.
33. Brückner, A. A new approach to study the gas-phase oxidation of toluene: probing active sites in vanadia-based catalysts under working conditions. Appl. Catal. A. Gen. 2000, 200, 287-97.
34. Zhang, Y.; Wang, Y.; Xie, R.; et al. Photocatalytic oxidation for volatile organic compounds elimination: from fundamental research to practical applications. Environ. Sci. Technol. 2022, 56, 16582-601.
35. Xiong, L.; Tang, J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy. Mater. 2021, 11, 2003216.
36. Shi, Y.; Li, P.; Chen, H.; et al. Photocatalytic toluene oxidation with nickel-mediated cascaded active units over Ni/Bi2WO6 monolayers. Nat. Commun. 2024, 15, 4641.
37. Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, e2107668.
38. Chai, Z. Heterogeneous photocatalytic strategies for C(sp3)-H activation. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316444.
39. He, T.; Zhao, Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303086.
40. Mai, H.; Le, T. C.; Chen, D.; Winkler, D. A.; Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 2022, 122, 13478-515.
41. Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 2012, 112, 5919-48.
42. da Costa Filho BM, Vilar VJ. Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: a review. Chem. Eng. J. 2020, 391, 123531.
43. Liang, C.; Li, C.; Zhu, Y.; et al. Recent advances of photocatalytic degradation for BTEX: materials, operation, and mechanism. Chem. Eng. J. 2023, 455, 140461.
44. MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous adsorbents: recent advances and novel applications. J. Hazard. Mater. 2018, 341, 404-23.
45. Wu, J.; Alipouri, Y.; Luo, H.; Zhong, L. Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: a critical review with particular focus on byproduct formation and modeling. J. Hazard. Mater. 2022, 421, 126766.
46. Zheng, Y.; Fu, K.; Yu, Z.; Su, Y.; Han, R.; Liu, Q. Oxygen vacancies in a catalyst for VOCs oxidation: synthesis, characterization, and catalytic effects. J. Mater. Chem. A. 2022, 10, 14171-86.
47. Cao, X.; Chen, Z.; Lin, R.; et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nat. Catal. 2018, 1, 704-10.
48. Teng, Z.; Zhang, Z.; Yang, H.; Zhang, Q.; Ohno, T.; Su, C. Atomically isolated Sb(CN)3 on sp2-c-COFs with balanced hydrophilic and oleophilic sites for photocatalytic C-H activation. Sci. Adv. 2024, 10, eadl5432.
49. Das, A.; Mandal, I.; Venkatramani, R.; Dasgupta, J. Ultrafast photoactivation of C-H bonds inside water-soluble nanocages. Sci. Adv. 2019, 5, eaav4806.
50. Li, F.; Tian, D.; Fan, Y.; et al. Chiral acid-catalysed enantioselective C-H functionalization of toluene and its derivatives driven by visible light. Nat. Commun. 2019, 10, 1774.
51. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-36.
52. Wang, H.; Chen, S.; Yong, D.; et al. Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737-42.
53. He, W.; Kim, H. K.; Wamer, W. G.; Melka, D.; Callahan, J. H.; Yin, J. J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 2014, 136, 750-7.
54. Yuan, J. P.; Guan, Z. J.; Lin, H. Y.; et al. Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303896.
55. Gao, K.; Cheng, Y.; Zhang, Z.; et al. Guest-regulated generation of reactive oxygen species from porphyrin-based multicomponent metallacages for selective photocatalysis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319488.
56. Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 2014, 43, 5276-87.
57. Ponseca, C. S. J.; Chábera, P.; Uhlig, J.; Persson, P.; Sundström, V. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 2017, 117, 10940-1024.
58. Zhang, P.; Wang, T.; Chang, X.; Gong, J. Effective charge carrier utilization in photocatalytic conversions. Acc. Chem. Res. 2016, 49, 911-21.
60. Xue, Z.; Yang, J.; Ma, L.; et al. Efficient benzylic C–H bond activation over single-atom yttrium supported on TiO2 via facilitated molecular oxygen and surface lattice oxygen activation. ACS. Catal. 2024, 14, 249-61.
61. Chen, X.; Tian, X.; Shin, I.; Yoon, J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2011, 40, 4783-804.
62. Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 2016, 116, 3029-85.
63. Zhang, H.; Zhong, W.; Gong, Q.; et al. Photo-driven iron-induced non-oxidative coupling of methane to ethane. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303405.
64. Li, M.; Yu, S.; Huang, H.; et al. Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem. Int. Ed. Engl. 2019, 58, 9517-21.
65. Huang, H.; Tu, S.; Zeng, C.; Zhang, T.; Reshak, A. H.; Zhang, Y. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. Int. Ed. Engl. 2017, 56, 11860-4.
66. Cao, X.; Huang, A.; Liang, C.; et al. Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C-H bonds via water oxidation. J. Am. Chem. Soc. 2022, 144, 3386-97.
67. Zhao, X.; He, S.; Wang, J.; et al. Near-infrared self-assembled hydroxyl radical generator based on photoinduced cascade electron transfer for hypoxic tumor phototherapy. Adv. Mater. 2023, 35, e2305163.
68. Luo, L.; Luo, J.; Li, H.; et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.
69. Song, H.; Meng, X.; Wang, S.; et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507-15.
70. Huang, Z.; Luo, N.; Zhang, C.; Wang, F. Radical generation and fate control for photocatalytic biomass conversion. Nat. Rev. Chem. 2022, 6, 197-214.
71. Zhou, Y.; Zhang, L.; Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.
72. Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705-9.
73. Chen, X.; Addicoat, M.; Jin, E.; et al. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc. 2015, 137, 3241-7.
74. Tachikawa, T.; Majima, T. Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 2010, 39, 4802-19.
75. Gao, Y.; Wu, T.; Yang, C.; et al. Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts. Angew. Chem. Int. Ed. Engl. 2021, 60, 22513-21.
76. Sun, Y.; Guo, S.; Fan, L.; Cai, J.; Han, W.; Zhang, F. Molecular oxygen activation in photocatalysis: generation, detection and application. Surf. Interface. 2024, 46, 104033.
77. Wang, Y.; Lin, Y.; He, S.; Wu, S.; Yang, C. Singlet oxygen: properties, generation, detection, and environmental applications. J. Hazard. Mater. 2024, 461, 132538.
78. Cheng, J.; Wan, S.; Cao, S. Promoting solar-driven hydrogen peroxide production over thiazole-based conjugated polymers via generating and converting singlet oxygen. Angew. Chem. Int. Ed. Engl. 2023, 62, e202310476.
79. Dimitrijevic, N. M.; Rozhkova, E.; Rajh, T. Dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species. J. Am. Chem. Soc. 2009, 131, 2893-9.
80. Li, J.; Liu, K.; Xue, J.; et al. CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 2019, 369, 450-61.
81. Wang, Q. Y.; Liu, J.; Cao, M.; et al. Aminal-linked porphyrinic covalent organic framework for rapid photocatalytic decontamination of mustard-gas simulant. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207130.
82. Wang, H.; Jiang, S.; Chen, S.; et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 2016, 28, 6940-5.
83. Jiang, M.; Wang, Y.; Liu, H.; Yu, S.; Niu, K.; Xing, L. Construction of a novel pyrene-based two-dimensional supramolecular organic framework and the selective regulation of reactive oxygen species for photocatalysis. J. Mater. Chem. A. 2024, 12, 4752-60.
84. Suleman, S.; Zhang, Y.; Qian, Y.; et al. Turning on singlet oxygen generation by outer-sphere microenvironment modulation in porphyrinic covalent organic frameworks for photocatalytic oxidation. Angew. Chem. Int. Ed. Engl. 2024, 63, e202314988.
85. Keum, Y.; Kim, B.; Byun, A.; Park, J. Synthesis and photocatalytic properties of titanium-porphyrinic aerogels. Angew. Chem. Int. Ed. Engl. 2020, 59, 21591-6.
86. Huang, T.; Tian, F.; Wen, Z.; Li, G.; Liang, Y.; Chen, R. Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi2WO6-x to promote 1O2 production for the photodegradation of bisphenol A and its analogues in water matrix. J. Hazard. Mater. 2021, 403, 123661.
87. Long, R.; Huang, H.; Li, Y.; Song, L.; Xiong, Y. Palladium-based nanomaterials: a platform to produce reactive oxygen species for catalyzing oxidation reactions. Adv. Mater. 2015, 27, 7025-42.
88. Li, X.; Wang, T.; Tao, X.; Qiu, G.; Li, C.; Li, B. Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene. J. Mater. Chem. A. 2020, 8, 17657-69.
89. Luo, L.; Zhang, T.; Wang, M.; Yun, R.; Xiang, X. Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species. ChemSusChem 2020, 13, 5173-84.
90. Bicalho, H. A.; Quezada-Novoa, V.; Howarth, A. J. Metal–organic frameworks for the generation of reactive oxygen species. Chem. Phys. Rev. 2021, 2, 041301.
91. Waiskopf, N.; Ben-Shahar, Y.; Banin, U. Photocatalytic hybrid semiconductor-metal nanoparticles; from synergistic properties to emerging applications. Adv. Mater. 2018, 30, e1706697.
92. Lee, S.; Bae, H. S.; Choi, W. Selective control and characteristics of water oxidation and dioxygen reduction in environmental photo(electro)catalytic systems. Acc. Chem. Res. 2023, 56, 867-77.
93. Jiang, Z.; Xu, X.; Ma, Y.; et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549-54.
94. Zhou, P.; Luo, M.; Guo, S. Optimizing the semiconductor-metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 2022, 6, 823-38.
95. Ju, L.; Ma, Y.; Tan, X.; Kou, L. Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures. J. Am. Chem. Soc. 2023, 145, 26393-402.
96. Xu, X.; Dai, S.; Xu, S.; Zhu, Q.; Li, Y. Efficient photocatalytic cleavage of lignin models by a soluble perylene diimide/carbon nitride S-scheme heterojunction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202309066.
97. Dey, A.; Pradhan, J.; Biswas, S.; Ahamed, R. F.; Biswas, K.; Maji, T. K. COF-topological quantum material nano-heterostructure for CO2 to syngas production under visible light. Angew. Chem. Int. Ed. Engl. 2024, 63, e202315596.
98. Yang, Y.; Jia, H.; Hu, N.; et al. Construction of gold/rhodium freestanding superstructures as antenna-reactor photocatalysts for plasmon-driven nitrogen fixation. J. Am. Chem. Soc. 2024, 146, 7734-42.
99. Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543-59.
100. He, J.; Chen, L.; Ding, D.; et al. Facile fabrication of novel Cd3(C3N3S3)2/CdS porous composites and their photocatalytic performance for toluene selective oxidation under visible light irradiation. Appl. Catal. B. Environ. 2018, 233, 243-9.
101. Tan, Y. X.; Chai, Z. M.; Wang, B. H.; et al. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: synergetic effect of compact heterojunction and S-vacancy. ACS. Catal. 2021, 11, 2492-503.
102. Gao, S.; Wang, B.; Chen, F.; et al. Confinement of CsPbBr3 perovskite nanocrystals into extra-large-pore zeolite for efficient and stable photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319996.
103. Cortés-Villena, A.; Bellezza, D.; Cunha, C.; et al. Engineering metal halide perovskite nanocrystals with BODIPY dyes for photosensitization and photocatalytic applications. J. Am. Chem. Soc. 2024, 146, 14479-92.
104. Lee, J.; Kumar, A.; Tüysüz, H. Solar-light-driven photocatalytic oxidative coupling of phenol derivatives over bismuth-based porous metal halide perovskites. Angew. Chem. Int. Ed. Engl. 2024, 63, e202404496.
105. Lopes, J. C.; Albero, J.; Sampaio, M. J.; Silva, C. G.; García, H.; Faria, J. L. Selective oxidative coupling of amines through light-activated bismuth halide perovskites. ChemCatChem 2024, 16, e202301432.
106. Mondal, S.; Banerjee, S.; Bera, S.; et al. CsPbBr3 perovskite polyhedral nanocrystal photocatalysts for decarboxylative alkylation via Csp3–H bond activation of unactivated ethers. ACS. Catal. 2024, 14, 6633-43.
107. Song, J.; Zhang, C.; Zhang, H.; et al. In situ growth of lead-free perovskite Cs2AgBiBr6 on a flexible ultrathin carbon nitride sheet for highly efficient photocatalytic benzylic C(sp3)−H bond activation. Chem. Eng. J. 2023, 453, 139748.
108. Bai, Z. J.; Mao, Y.; Wang, B. H.; et al. Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3)-H bond activation. Nano. Res. 2023, 16, 6104-12.
109. Zhao, Y.; Dai, Y.; Wang, Q.; et al. Anions-exchange-induced efficient carrier transport at CsPbBrxCl3-x/TiO2 interface for photocatalytic activation of C(sp3)−H bond in toluene oxidation. ChemCatChem 2021, 13, 2592-8.
110. Cui, Z.; Zhang, Q.; Fu, H.; et al. Composite of lead-free halide perovskite Cs3Bi2Br9 with TiO2 as an efficient photocatalyst for C(sp3)−H bond activation. Appl. Catal. B. Environ. 2023, 333, 122812.
111. Zhou, B.; Fan, K.; Chong, Y.; et al. Modulating adsorption–redox sites and charge separation of Cs3Bi2Br9-x@AgBr core–shell heterostructure for selective toluene photooxidation. ACS. Energy. Lett. 2024, 9, 1743-52.
112. Chai, Z.; Wang, B.; Tan, Y.; et al. Enhanced photocatalytic activity for selective oxidation of toluene over cubic–hexagonal CdS phase junctions. Ind. Eng. Chem. Res. 2021, 60, 11106-16.
113. Deng, J.; Xu, D.; Zhang, J.; et al. Cs3Bi2Br9/BiOBr S-scheme heterojunction for selective oxidation of benzylic C-H bonds. J. Mater. Sci. Technol. 2024, 180, 150-9.
114. Wongthep, S.; Pluengphon, P.; Tantraviwat, D.; et al. New visible-light-driven Bi2MoO6/Cs3Sb2Br9 heterostructure for selective photocatalytic oxidation of toluene to benzaldehyde. J. Colloid. Interface. Sci. 2024, 655, 32-42.
115. Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218688.
116. Li, F.; Yue, X.; Liao, Y.; Qiao, L.; Lv, K.; Xiang, Q. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat. Commun. 2023, 14, 3901.
117. Jiang, X.; Chen, Z.; Shu, Y.; et al. In-situ assembled S-scheme heterojunction of CsPbBr3 nanocrystals and W18O49 ultrathin nanowires for enhanced bifunctional photocatalysis. Appl. Catal. B. Environ. 2024, 348, 123840.
118. Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.
119. Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559-612.
120. Sajan, C. P.; Wageh, S.; Al-ghamdi, A. A.; Yu, J.; Cao, S. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano. Res. 2016, 9, 3-27.
121. Xiao, C.; Lu, B.; Xue, P.; et al. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 2020, 4, 2562-98.
122. Yang, X.; Li, X.; Zhang, B.; Liu, T.; Chen, Z. Facet-dependent Bi2MoO6 for highly efficient photocatalytic selective oxidation of sp3 C–H bonds using O2 as an oxidant. Catal. Sci. Technol. 2023, 13, 1996-2000.
123. Li, C.; Gu, S.; Xiao, Y.; et al. Single-crystal oxygen-rich bismuth oxybromide nanosheets with highly exposed defective {10-1} facets for the selective oxidation of toluene under blue LED irradiation. J. Colloid. Interface. Sci. 2024, 668, 426-36.
124. Zhou, G.; Lei, B.; Dong, F. Lewis acid sites in (110) facet-exposed BiOBr promote C–H activation and selective photocatalytic toluene oxidation. ACS. Catal. 2024, 14, 4791-8.
125. Zhu, H.; Fu, Y.; Meng, F.; et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636-42.
126. Zhou, N.; Bekenstein, Y.; Eisler, C. N.; et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 2019, 5, eaav8141.
127. Zhang, G.; Liu, G.; Wang, L.; Irvine, J. T. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951-84.
128. Wang, W.; Tadé, M. O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371-408.
129. Katan, C.; Mercier, N.; Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 2019, 119, 3140-92.
130. Wang, H.; Liu, W.; He, X.; Zhang, P.; Zhang, X.; Xie, Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 2020, 142, 14007-22.
131. Zhang, K.; Chen, H.; Liu, Y.; et al. Two-dimensional Bi2WxMo1-xO6 solid solution nanosheets for enhanced photocatalytic toluene oxidation to benzaldehyde. Appl. Cataly. B. Environ. 2022, 315, 121545.
132. Bai, Z.; Xiong, J.; Mao, Y.; et al. Lead-free Dion-Jacobson layered double perovskite as a photocatalyst for toluene oxidation. Cell. Rep. Phys. Sci. 2023, 4, 101591.
133. Mai, H.; Li, X.; Lu, J.; et al. Synthesis of layered lead-free perovskite nanocrystals with precise size and shape control and their photocatalytic activity. J. Am. Chem. Soc. 2023, 145, 17337-50.
134. Dai, Y.; Poidevin, C.; Ochoa-Hernández, C.; Auer, A. A.; Tüysüz, H. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation. Angew. Chem. Int. Ed. Engl. 2020, 59, 5788-96.
135. Zhang, H.; Zhou, Z.; Dong, Y.; Zhang, L.; Chen, H.; Kuang, D. Constructing a Cs3Sb2Br9/g-C3N4 hybrid for photocatalytic aromatic C(sp3)-H bond activation. Solar. RRL. 2021, 5, 2100559.
136. Yi, J.; Ke, S.; Lu, S.; et al. High-efficiency visible-light-driven oxidation of primary C-H bonds in toluene over a CsPbBr3 perovskite supported by hierarchical TiO2 nanoflakes. Nanoscale 2023, 15, 14584-94.
137. Guo, Y.; Chen, J.; Zhao, Y.; Lou, Y. In-situ anchoring Pb-free Cs3Bi2Br9@BiOBr quantum dots on NHx-rich silica with enhanced blue emission and satisfactory stability for photocatalytic toluene oxidation. ChemSusChem 2022, 15, e202200793.
138. Yu, B.; Zhang, S.; Wang, X. Helical Microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem. Int. Ed. Engl. 2021, 60, 17404-9.
139. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
140. Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 2020, 120, 12175-216.
141. Su, L.; Wang, P.; Ma, X.; Wang, J.; Zhan, S. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-fenton process. Angew. Chem. Int. Ed. Engl. 2021, 60, 21261-6.
142. Liu, Y.; Sun, J.; Huang, H.; et al. Improving CO2 photoconversion with ionic liquid and Co single atoms. Nat. Commun. 2023, 14, 1457.
143. Rocha, G. F. S. R.; da, S. M. A. R.; Rogolino, A.; et al. Carbon nitride based materials: more than just a support for single-atom catalysis. Chem. Soc. Rev. 2023, 52, 4878-932.
144. Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018, 1, 192-8.
145. Lu, Y.; Wang, J.; Yu, L.; et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149-56.
146. Han, G. F.; Li, F.; Rykov, A. I.; et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403-7.
147. Zhang, H.; Wei, J.; Dong, J.; et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. Engl. 2016, 55, 14310-4.
148. Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-28.
149. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-511.
150. Xu, C.; Pan, Y.; Wan, G.; et al. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110-7.
151. da, S. M. A. R.; Tarakina, N. V.; Filho, J. B. G.; et al. Single-atoms on crystalline carbon nitrides for selective C-H photooxidation: a bridge to achieve homogeneous pathways in heterogeneous materials. Adv. Mater. 2023, 35, e2304152.
152. Xie, J.; Li, X.; Guo, J.; et al. Highly selective oxidation of benzene to phenol with air at room temperature promoted by water. Nat. Commun. 2023, 14, 4431.
153. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano. Energy. 2018, 53, 296-336.
154. Pastor, E.; Sachs, M.; Selim, S.; Durrant, J. R.; Bakulin, A. A.; Walsh, A. Electronic defects in metal oxide photocatalysts. Nat. Rev. Mater. 2022, 7, 503-21.
155. Wang, Z.; Xiao, M.; You, J.; Liu, G.; Wang, L. Defect engineering in photocatalysts and photoelectrodes: from small to big. Acc. Mater. Res. 2022, 3, 1127-36.
156. Zafar, Z.; Yi, S.; Li, J.; et al. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy. Environ. Mater. 2022, 5, 68-114.
157. Zhang, N.; Gao, C.; Xiong, Y. Defect engineering: a versatile tool for tuning the activation of key molecules in photocatalytic reactions. J. Energy. Chem. 2019, 37, 43-57.
158. Li, X.; Luo, L.; Guo, H.; et al. Tailoring bismuth defects in Bi2WO6 nanosheets for photocatalytic C–H activation. J. Mater. Chem. A. 2024, 12, 11841-7.
159. Wang, H.; Cao, C.; Li, D.; et al. Achieving high selectivity in photocatalytic oxidation of toluene on amorphous BiOCl nanosheets coupled with TiO2. J. Am. Chem. Soc. 2023, 145, 16852-61.
160. Huang, H.; Verhaeghe, D.; Weng, B.; et al. Metal halide perovskite based heterojunction photocatalysts. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203261.
161. Xu, D.; Zhang, S. N.; Chen, J. S.; Li, X. H. Design of the synergistic rectifying interfaces in mott-schottky catalysts. Chem. Rev. 2023, 123, 1-30.
162. Su, K.; Liu, H.; Zeng, B.; et al. Visible-light-driven selective oxidation of toluene into benzaldehyde over nitrogen-modified Nb2O5 nanomeshes. ACS. Catal. 2020, 10, 1324-33.
163. Ding, Y. F.; Yin, S. F.; Cai, M. Q. Enhanced photocatalytic toluene oxidation performance induced by two types of cooperative fluorine doping in polymeric carbon nitride with the first-principles calculations. J. Colloid. Interface. Sci. 2023, 630, 452-9.
164. Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Designed synthesis of a 2D Porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed. Engl. 2019, 58, 6430-4.
165. Zhang, P.; Sui, X.; Wang, Y.; et al. Surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids for efficient photocatalytic CO2 methanation. J. Am. Chem. Soc. 2023, 145, 5769-77.
166. Zhang, Z.; Yang, Y.; Wang, Y.; et al. Revealing the A-site effect of lead-free A3Sb2Br9 perovskite in photocatalytic C(sp3)-H bond activation. Angew. Chem. Int. Ed. Engl. 2020, 59, 18136-9.
167. Fu, H.; Xu, Y.; Qiu, D.; et al. A library of rare earth oxide ultrathin nanowires with polymer-like behaviors. Angew. Chem. Int. Ed. Engl. 2022, 61, e202212251.
168. Khoo, R. S. H.; Fiankor, C.; Yang, S.; et al. Postsynthetic modification of the nonanuclear node in a zirconium metal-organic framework for photocatalytic oxidation of hydrocarbons. J. Am. Chem. Soc. 2023, 145, 24052-60.
169. Zhang, Q.; An, B.; Lei, Y.; et al. Cl2·- mediates direct and selective conversion of inert C(sp3)-H bonds into aldehydes/ketones. Angew. Chem. Int. Ed. Engl. 2023, 62, e202304699.
170. Zhang, H.; Liu, S.; Zheng, A.; et al. Enhanced charge transfer process and photocatalytic activity over a phosphonate-based MOF via amorphization strategy. Angew. Chem. Int. Ed. Engl. 2024, 63, e202400965.
171. Yoshizawa, M.; Miyagi, S.; Kawano, M.; Ishiguro, K.; Fujita, M. Alkane oxidation via photochemical excitation of a self-assembled molecular cage. J. Am. Chem. Soc. 2004, 126, 9172-3.
172. Furutani, Y.; Kandori, H.; Kawano, M.; Nakabayashi, K.; Yoshizawa, M.; Fujita, M. In situ spectroscopic, electrochemical, and theoretical studies of the photoinduced host-guest electron transfer that precedes unusual host-mediated alkane photooxidation. J. Am. Chem. Soc. 2009, 131, 4764-8.
173. Gera, R.; Das, A.; Jha, A.; Dasgupta, J. Light-induced proton-coupled electron transfer inside a nanocage. J. Am. Chem. Soc. 2014, 136, 15909-12.
174. Zhang, Z.; Liang, Y.; Huang, H.; et al. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew. Chem. Int. Ed. Engl. 2019, 58, 7263-7.
175. Romani, L.; Speltini, A.; Ambrosio, F.; et al. Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis. Angew. Chem. Int. Ed. Engl. 2021, 60, 3611-8.
176. Zhou, P.; Chen, H.; Chao, Y.; et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 2021, 12, 4412.
177. Wu, Y.; Wu, Q.; Zhang, Q.; et al. An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy. Environ. Sci. 2022, 15, 1271-81.
178. Bai, Z.; Tian, S.; Zeng, T.; et al. Cs3Bi2Br9 nanodots stabilized on defective BiOBr nanosheets by interfacial chemical bonding: modulated charge transfer for photocatalytic C(sp3)–H bond activation. ACS. Catal. 2022, 12, 15157-67.
179. Dai, Y.; Tüysüz, H. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation. Solar. RRL. 2021, 5, 2100265.
180. Mu, C.; Lv, C.; Meng, X.; Sun, J.; Tong, Z.; Huang, K. In situ characterization techniques applied in photocatalysis: a review. Adv. Mater. Interfaces. 2023, 10, 2201842.
181. Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Metal-sulfide-based heterojunction photocatalysts: principles, impact, applications, and in-situ characterization. Chinese. J. Catal. 2023, 49, 42-67.
182. Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, e2003521.
183. Shen, H.; Yang, M.; Hao, L.; Wang, J.; Strunk, J.; Sun, Z. Photocatalytic nitrogen reduction to ammonia: insights into the role of defect engineering in photocatalysts. Nano. Res. 2022, 15, 2773-809.
184. Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 2019, 48, 4979-5015.
185. Bonke, S. A.; Risse, T.; Schnegg, A.; Brückner, A. In situ electron paramagnetic resonance spectroscopy for catalysis. Nat. Rev. Method. Prime. 2021, 1, 33.
186. Zhao, Z. J.; Wu, T.; Xiong, C.; et al. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability. Angew. Chem. Int. Ed. Engl. 2018, 57, 6791-5.
187. Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. Mechanism of methanol decomposition over single-site Pt1/CeO2 catalyst: a DRIFTS study. J. Am. Chem. Soc. 2021, 143, 60-4.
188. Wang, X.; Rosspeintner, A.; Ziarati, A.; Zhao, J.; Bürgi, T. Insight into the transient inactivation effect on Au/TiO2 catalyst by in-situ DRIFT and UV-vis spectroscopy. Nat. Commun. 2022, 13, 5458.
189. Paul, R.; Das, R.; Das, N.; et al. Tweaking photo CO2 reduction by altering lewis acidic sites in metalated-porous organic polymer for adjustable H2/CO ratio in syngas production. Angew. Chem. Int. Ed. Engl. 2023, 62, e202311304.
190. Li, Y.; Chen, B.; Liu, L.; Zhu, B.; Zhang, D. Water-resistance-based S-scheme heterojunction for deep mineralization of toluene. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319432.
191. Zhou, E.; Wang, F.; Zhang, X.; Hui, Y.; Wang, Y. Cyanide-based covalent organic frameworks for enhanced overall photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. Engl. 2024, 63, e202400999.
192. Meunier, F. C. Pitfalls and benefits of in situ and operando diffuse reflectance FT-IR spectroscopy (DRIFTS) applied to catalytic reactions. React. Chem. Eng. 2016, 1, 134-41.
193. Meunier, F. C. Hydrogenation of CO and CO2: contributions of IR operando studies. Catal. Today. 2023, 423, 113863.
194. Zaera, F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624-63.
195. Duan, M.; Hu, C.; Li, H.; et al. Synergizing inter and intraband transitions in defective tungsten oxide for efficient photocatalytic alcohol dehydration to alkenes. JACS. Au. 2022, 2, 1160-8.
196. Wang, K.; Kong, X.; Xie, H.; Li, S.; Wang, M.; Jin, Z. In-situ XPS reveals the interfacial engineering of Co/Ce-BDC with graphdiyne
197. Feng, N.; Wang, Q.; Zheng, A.; et al. Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 2013, 135, 1607-16.
198. Zhang, F.; Li, Y.; Ding, B.; Shao, G.; Li, N.; Zhang, P. Electrospinning photocatalysis meet in situ irradiated XPS: recent mechanisms advances and challenges. Small 2023, 19, e2303867.
199. Xu, F.; Zhang, L.; Cheng, B.; Yu, J. Direct Z-scheme TiO2/NiS core–shell hybrid nanofibers with enhanced photocatalytic H2-production activity. ACS. Sustain. Chem. Eng. 2018, 6, 12291-8.
200. Wang, L.; Li, Y.; Ai, Y.; et al. Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv. Funct. Mater. 2023, 33, 2306466.
201. Wang, R.; Wang, Z.; Qiu, Z.; Wan, S.; Ding, J.; Zhong, Q. Nanoscale 2D g-C3N4 decorating 3D hierarchical architecture LDH for artificial photosynthesis and mechanism insight. Chem. Eng. J. 2022, 448, 137338.
202. Zhang, N.; Xiong, Y. Dynamic characterization for artificial photosynthesis through in situ X-ray photoelectron spectroscopy. Curr. Opin. Green. Sust. 2023, 41, 100796.
203. Oversteeg CH, Doan HQ, de Groot FM, Cuk T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 2017, 46, 102-25.
204. Singh, J.; Lamberti, C.; van, B. J. A. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem. Soc. Rev. 2010, 39, 4754-66.
205. Timoshenko, J.; Roldan, C. B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882-961.
206. Lin, S. C.; Chang, C. C.; Chiu, S. Y.; et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 2020, 11, 3525.
207. Samanta, B.; Morales-García, Á.; Illas, F.; et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 2022, 51, 3794-818.
208. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159-329.
209. Majek, M.; Jacobi, W. A. Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions. Acc. Chem. Res. 2016, 49, 2316-27.
210. Wu, M.; Chen, S.; Xiang, W. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chem. Eng. J. 2020, 387, 124101.
211. Wang, P.; Wang, J.; An, X.; et al. Generation of abundant defects in Mn-Co mixed oxides by a facile agar-gel method for highly efficient catalysis of total toluene oxidation. Appl. Catal. B. Environ. 2021, 282, 119560.
212. Yang, W.; Sun, K.; Wan, J.; et al. Dual-site oxygen activation for enhanced photocatalytic aerobic oxidation by S-scheme Ni2P/Bi3O4Br-OVs heterojunction. Chem. Eng. J. 2023, 452, 139425.
213. Qian, H.; Hou, Q.; Zhang, W.; et al. Construction of electron transport channels and oxygen adsorption sites to modulate reactive oxygen species for photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Appl. Catal. B. Environ. 2022, 319, 121907.
214. Liu, L.; Jing, G.; Xu, C.; et al. Exceptional formaldehyde oxidation at room temperature on Co single-atom functionalized TiO2 nanowires via highly effective O2 activation. Appl. Catal. B. Environ. 2024, 344, 123634.
215. DeCoste, J. B.; Weston, M. H.; Fuller, P. E.; et al. Metal-organic frameworks for oxygen storage. Angew. Chem. Int. Ed. Engl. 2014, 53, 14092-5.
216. Murray, L. J.; Dinca, M.; Yano, J.; et al. Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. J. Am. Chem. Soc. 2010, 132, 7856-7.
217. Popczun, E. J.; Tafen, D. N.; Natesakhawat, S.; et al. Temperature tunability in Sr1-xCaxFeO3-δ for reversible oxygen storage: a computational and experimental study. J. Mater. Chem. A. 2020, 8, 2602-12.
218. Ma, J.; Li, X.; Zhang, C.; Ma, Q.; He, H. Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone. Appl. Catal. B. Environ. 2020, 264, 118498.
219. Liu, H.; Fan, Z.; Sun, C.; et al. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl. Catal. B. Environ. 2019, 244, 671-83.
220. Li, X.; Mai, H.; Lu, J.; et al. Rational atom substitution to obtain efficient, lead-free photocatalytic perovskites assisted by machine learning and DFT calculations. Angew. Chem. Int. Ed. Engl. 2023, 62, e202315002.
221. Masood, H.; Toe, C. Y.; Teoh, W. Y.; Sethu, V.; Amal, R. Machine learning for accelerated discovery of solar photocatalysts. ACS. Catal. 2019, 9, 11774-87.
222. Ge, L.; Ke, Y.; Li, X. Machine learning integrated photocatalysis: progress and challenges. Chem. Commun. 2023, 59, 5795-806.
223. Zhang, C.; Firestein, K. L.; Fernando, J. F. S.; Siriwardena, D.; von, T. J. E.; Golberg, D. Recent progress of in situ transmission electron microscopy for energy materials. Adv. Mater. 2020, 32, e1904094.
224. Zhao, B.; Sun, M.; Chen, F.; et al. Unveiling the activity origin of iron nitride as catalytic material for efficient hydrogenation of CO2 to C2+ hydrocarbons. Angew. Chem. Int. Ed. Engl. 2021, 60, 4496-500.
225. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; Macmillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, BFs415700170052.
226. Qi, M.; Li, Z.; Zhang, Z.; Gao, Y.; Wang, Q. Controllable synthesis of MnO2/iron mesh monolithic catalyst and its significant enhancement for toluene oxidation. Chinese. Chem. Lett. 2023, 34, 107437.
227. Zhou, J.; Wang, Q.; Liu, H.; Bao, M.; Wang, J. VMoNb/CeO2 as an efficient catalyst for the gas-phase selective oxidation of toluene to benzaldehyde. Mol. Catal. 2024, 569, 114570.
228. Rawlings, A. J.; Diorazio, L. J.; Wills, M. C-N bond formation between alcohols and amines using an iron cyclopentadienone catalyst. Org. Lett. 2015, 17, 1086-9.
229. Pazo-Carballo, C.; Blanco, E.; Camu, E.; et al. Theoretical and experimental study for cross-coupling aldol condensation over mono- and bimetallic UiO-66 nanocatalysts. ACS. Appl. Nano. Mater. 2023, 6, 5422-33.