REFERENCES

1. Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-828.

2. Li, J.; Wang, X.; Zhao, G.; et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322-56.

3. Karmakar, A.; Velasco, E.; Li, J. Metal-organic frameworks as effective sensors and scavengers for toxic environmental pollutants. Natl. Sci. Rev. 2022, 9, nwac091.

4. Wang, H.; Zhu, Q.; Zou, R.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52-80.

5. Wu, S.; Yuan, B.; Wang, L. MOF–ammonia working pairs in thermal energy conversion and storage. Nat. Rev. Mater. 2023, 8, 636-8.

6. Liang, Z.; Qu, C.; Xia, D.; Zou, R.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. Engl. 2018, 57, 9604-33.

7. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-511.

8. Yang, B.; Shi, Y.; Kang, D. J.; Chen, Z.; Pang, H. Architectural design and electrochemical performance of MOF-based solid-state electrolytes for high-performance secondary batteries. Interdiscip. Mater. 2023, 2, 475-510.

9. Guo, J.; Qin, Y.; Zhu, Y.; et al. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366-96.

10. Luo, R.; Zhu, D.; Ju, H.; Lei, J. Reticular electrochemiluminescence nanoemitters: structural design and enhancement mechanism. Acc. Chem. Res. 2023, 56, 1920-30.

11. Koo, W.; Jang, J.; Kim, I. Metal-organic frameworks for chemiresistive sensors. Chem 2019, 5, 1938-63.

12. Zhang, L. T.; Zhou, Y.; Han, S. T. The role of metal-organic frameworks in electronic sensors. Angew. Chem. Int. Ed. Engl. 2021, 60, 15192-212.

13. Yang, J.; Yang, Y. Metal-organic framework-based cancer theranostic nanoplatforms. VIEW. 2020, 1, e20.

14. He, S.; Wu, L.; Li, X.; et al. Metal-organic frameworks for advanced drug delivery. Acta. Pharm. Sin. B. 2021, 11, 2362-95.

15. Chen, R.; Chen, X.; Wang, Y.; Wang, B. Biomimetic metal–organic frameworks for biological applications. Trend. Chem. 2023, 5, 460-73.

16. Cong, W.; Nanda, S.; Li, H.; Fang, Z.; Dalai, A. K.; Kozinski, J. A. Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green. Chem. 2021, 23, 2595-618.

17. Konnerth, H.; Matsagar, B. M.; Chen, S. S.; Prechtl, M. H.; Shieh, F.; Wu, K. C. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 2020, 416, 213319.

18. Freund, R.; Canossa, S.; Cohen, S. M.; et al. 25 Years of reticular chemistry. Angew. Chem. Int. Ed. Engl. 2021, 60, 23946-74.

19. Yaghi, O. M. The reticular chemist. Nano. Lett. 2020, 20, 8432-4.

20. Yaghi, O. M. Reticular chemistry in all dimensions. ACS. Cent. Sci. 2019, 5, 1295-300.

21. Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, O. M. Spiers memorial lecture: progress and prospects of reticular chemistry. Faraday. Discuss. 2017, 201, 9-45.

22. Liu, Y.; Ma, Y.; Zhao, Y.; et al. Weaving of organic threads into a crystalline covalent organic framework. Science 2016, 351, 365-9.

23. Liu, Y.; O’Keeffe, M.; Treacy, M. M. J.; Yaghi, O. M. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem. Soc. Rev. 2018, 47, 4642-64.

24. Madsen, R. S. K.; Qiao, A.; Sen, J.; et al. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 2020, 367, 1473-6.

25. BASF News Releases. BASF becomes first company to successfully produce metal-organic frameworks on a commercial scale for carbon capture. 2023. Available from: https://www.basf.com/global/en/media/news-releases/2023/10/p-23-327.html. [Last accessed on 9 Oct 2024].

26. Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348-55.

27. Xu, W.; Yaghi, O. M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS. Cent. Sci. 2020, 6, 1348-54.

28. Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J.; Yaghi, O. M. Practical water production from desert air. Sci. Adv. 2018, 4, eaat3198.

29. Hanikel, N.; Prévot, M. S.; Fathieh, F.; et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS. Cent. Sci. 2019, 5, 1699-706.

30. Song, W.; Zheng, Z.; Alawadhi, A. H.; Yaghi, O. M. MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat. Water. 2023, 1, 626-34.

31. Zheng, Z.; Nguyen, H. L.; Hanikel, N.; et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 2023, 18, 136-56.

32. Neumann, S. E.; Neumann, K.; Zheng, Z.; Hanikel, N.; Tsao, J.; Yaghi, O. M. Harvesting water in the classroom. J. Chem. Educ. 2023, 100, 4482-7.

33. Gagliardi, L.; Yaghi, O. M. Three future directions for metal–organic frameworks. Chem. Mater. 2023, 35, 5711-2.

34. Deng, H.; Doonan, C. J.; Furukawa, H.; et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846-50.

35. Kong, X.; Deng, H.; Yan, F.; et al. Mapping of functional groups in metal-organic frameworks. Science 2013, 341, 882-5.

36. Helal, A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Multivariate metal-organic frameworks. Natl. Sci. Rev. 2017, 4, 296-8.

37. Nam, D.; Kim, J.; Hwang, E.; et al. Multivariate porous platform based on metal-organic polyhedra with controllable functionality assembly. Matter 2021, 4, 2460-73.

38. Luo, T. Y.; Liu, C.; Gan, X. Y.; et al. Multivariate stratified metal-organic frameworks: diversification using domain building blocks. J. Am. Chem. Soc. 2019, 141, 2161-8.

39. Feng, L.; Yuan, S.; Li, J. L.; et al. Uncovering two principles of multivariate hierarchical metal-organic framework synthesis via retrosynthetic design. ACS. Cent. Sci. 2018, 4, 1719-26.

40. Feng, L.; Yuan, S.; Zhang, L. L.; et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363-72.

41. Wang, J.; Rao, Y.; Wu, Y.; Yang, L.; Li, Q. Generation of site-selective structural vacancies in a multinary metal-organic framework for enhanced catalysis. ACS. Appl. Mater. Interfaces. 2023, 15, 31354-63.

42. Tu, B.; Pang, Q.; Ning, E.; et al. Heterogeneity within a mesoporous metal-organic framework with three distinct metal-containing building units. J. Am. Chem. Soc. 2015, 137, 13456-9.

43. Pang, J.; Yuan, S.; Qin, J.; et al. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 12328-32.

44. Hu, Y.; Zhang, X.; Khoo, R. S. H.; Fiankor, C.; Zhang, X.; Zhang, J. Stepwise assembly of quinary multivariate metal-organic frameworks via diversified linker exchange and installation. J. Am. Chem. Soc. 2023, 145, 13929-37.

45. Abednatanzi, S.; Gohari, D. P.; Depauw, H.; et al. Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 2019, 48, 2535-65.

46. Masoomi, M. Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem. Int. Ed. Engl. 2019, 58, 15188-205.

47. Wang, L. J.; Deng, H.; Furukawa, H.; et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 2014, 53, 5881-3.

48. Brozek, C. K.; Dincă, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 2013, 135, 12886-91.

49. Liu, Q.; Cong, H.; Deng, H. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 13822-5.

50. Sun, D.; Wong, L. W.; Wong, H. Y.; et al. Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216008.

51. Ji, Z.; Li, T.; Yaghi, O. M. Sequencing of metals in multivariate metal-organic frameworks. Science 2020, 369, 674-80.

52. Fang, Z.; Dürholt, J. P.; Kauer, M.; et al. Structural complexity in metal-organic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J. Am. Chem. Soc. 2014, 136, 9627-36.

53. Ma, Y.; Ma, Y.; Dreyer, S. L.; et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 2021, 33, e2101342.

54. Li, Z.; Li, X.; Light, M. E.; et al. A metal-organic framework incorporating eight different size rare-earth metal elements: toward multifunctionality À La Carte. Adv. Funct. Mater. 2023, 33, 2307369.

55. Sun, Y.; Wu, W.; Yu, L.; et al. Asymmetric acidic/alkaline N2 electrofixation accelerated by high-entropy metal–organic framework derivatives. Carbon. Energy. 2023, 5, e263.

56. Peng, Y.; Tan, Q.; Huang, H.; et al. Customization of functional MOFs by a modular design strategy for target applications. Chem. Synth. 2022, 2, 15.

57. Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Chapter 4: Binary metal-organic frameworks. In: Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks. Wiley; 2019. pp. 83-119.

58. Yang, J.; Zhang, Y. B.; Liu, Q.; et al. Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2017, 139, 6448-55.

59. Zhang, H.; Lu, C.; Zhang, J. Recent applications of multifunctional boron imidazolate framework materials. Acc. Mater. Res. 2023, 4, 995-1007.

60. Zhang, H. X.; Wang, F.; Yang, H.; Tan, Y. X.; Zhang, J.; Bu, X. Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. J. Am. Chem. Soc. 2011, 133, 11884-7.

61. Li, Y. F.; He, Y. P.; Li, Q. H.; Zhang, J. Integrated anionic zirconium-organic cage and cationic boron-imidazolate cage for synergetic optical limiting. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318806.

62. Lee, M. J.; Kwon, H. T.; Jeong, H. K. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angew. Chem. Int. Ed. Engl. 2018, 57, 156-61.

63. Nguyen, Q. T.; Do, X. H.; Cho, K. Y.; Lee, Y.; Baek, K. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions. J. CO2. Util. 2022, 61, 102061.

64. Liu, Y.; Zhao, M.; Ren, Y.; et al. Linker-exchanged zeolitic imidazolate framework membranes for efficient CO2 separation. J. Membr. Sci. 2024, 697, 122568.

65. Guo, Y.; Wang, J.; Zhang, D.; Qi, T.; Li, G. L. pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework. Colloid. Surface. A. 2019, 561, 1-8.

66. Wang, Z.; Zhang, H.; Song, H.; Bai, X. Ultra-fine potassium hexacyanoferrate(II) nanoparticles modified ZIF-67 for adsorptive removal of radioactive strontium from nuclear wastewater. Sep. Purif. Technol. 2024, 331, 125587.

67. Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; et al. Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem. Eur. J. 2012, 18, 10595-601.

68. Xiong, S.; Gong, Y.; Wang, H.; et al. A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation. Chem. Commun. 2014, 50, 12101-4.

69. Li, M.; Liu, J.; Gao, R.; Lin, D.; Wang, F.; Zhang, J. Design and synthesis of zeolitic tetrazolate-imidazolate frameworks. Mater. Today. Adv. 2021, 10, 100145.

70. Li, Y. M.; Yuan, J.; Ren, H.; et al. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 15378-90.

71. Zhang, W.; Wang, K.; Li, J.; et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew. Chem. Int. Ed. Engl. 2018, 57, 2592-5.

72. Liu, J.; Wang, F.; Zhang, J. Synthesis of homochiral zeolitic tetrazolate frameworks based on enantiopure porphyrin-like subunits. Cryst. Growth. Des. 2017, 17, 5393-7.

73. Zheng, Z.; Rong, Z.; Nguyen, H. L.; Yaghi, O. M. Structural chemistry of zeolitic imidazolate frameworks. Inorg. Chem. 2023, 62, 20861-73.

74. Liu, Y.; Chen, P.; Wang, Y.; et al. Design and synthesis of a zeolitic organic framework. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203584.

75. Park, K. S.; Ni, Z.; Côté, A. P.; et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186-91.

76. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. Engl. 2006, 45, 1557-9.

77. Wang, F.; Fu, H. R.; Kang, Y.; Zhang, J. A new approach towards zeolitic tetrazolate-imidazolate frameworks (ZTIFs) with uncoordinated N-heteroatom sites for high CO2 uptake. Chem. Commun. 2014, 50, 12065-8.

78. Li, K.; Olson, D. H.; Seidel, J.; et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131, 10368-9.

79. Banerjee, R.; Phan, A.; Wang, B.; et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939-43.

80. Kim, M. B.; Yu, J.; Ra, S. S. H.; Johnson, H. M.; Motkuri, R. K.; Thallapally, P. K. Enhanced iodine capture using a postsynthetically modified thione-silver zeolitic imidazole framework. ACS. Appl. Mater. Interfaces. 2023, 15, 54702-10.

81. Mondal, S. S.; Hovestadt, M.; Dey, S.; et al. Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation. CrystEngComm 2017, 19, 5882-91.

82. Zhao, Y.; Yuan, P. Q.; Xu, X. R.; Yang, J. Removal of phosphate by adsorption with 2-phenylimidazole-modified porous ZIF-8: powder and chitosan spheres. ACS. Omega. 2023, 8, 28436-47.

83. Ding, R.; Zhu, H.; Zhou, J.; et al. Highly water-stable and efficient hydrogen-producing heterostructure synthesized from Mn0.5Cd0.5S and a zeolitic imidazolate framework ZIF-8 via ligand and cation exchange. ACS. Appl. Mater. Interfaces. 2023, 15, 36477-88.

84. Morris, W.; Leung, B.; Furukawa, H.; et al. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2010, 132, 11006-8.

85. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2008, 130, 12626-7.

86. Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875-7.

87. Li, M.; Wang, F.; Zhang, J. Zeolitic tetrazolate-imidazolate frameworks with high chemical stability for selective separation of small hydrocarbons. Cryst. Growth. Des. 2016, 16, 3063-6.

88. Xiang, L.; Sheng, L.; Wang, C.; Zhang, L.; Pan, Y.; Li, Y. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv. Mater. 2017, 29, 1606999.

89. Tsai, C.; Niemantsverdriet, J.; Langner, E. H. Enhanced CO2 adsorption in nano-ZIF-8 modified by solvent assisted ligand exchange. Micropor. Mesopor. Mat. 2018, 262, 98-105.

90. Noh, K.; Sim, J.; Kim, J.; Kim, J. Metal imidazolate sulphate frameworks as a variation of zeolitic imidazolate frameworks. Chem. Commun. 2022, 58, 2983-6.

91. Alibakhshi, S.; Shahvelayati, A. S.; Sheshmani, S.; Ranjbar, M.; Souzangarzadeh, S. Design, synthesis, and characterization of a novel Zn(II)-2-phenyl benzimidazole framework for the removal of organic dyes. Sci. Rep. 2022, 12, 12431.

92. Lalonde, M. B.; Mondloch, J. E.; Deria, P.; et al. Selective solvent-assisted linker exchange (SALE) in a series of zeolitic imidazolate frameworks. Inorg. Chem. 2015, 54, 7142-4.

93. Park, H.; Moureau, D. M.; Parise, J. B. Hydrothermal synthesis and structural characterization of novel Zn−triazole−benzenedicarboxylate frameworks. Chem. Mater. 2006, 18, 525-31.

94. Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Pore surface tailored SOD-type metal-organic zeolites. Adv. Mater. 2011, 23, 1268-71.

95. Lin, R. B.; Chen, D.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. A zeolite-like zinc triazolate framework with high gas adsorption and separation performance. Inorg. Chem. 2012, 51, 9950-5.

96. Zhang, X. W.; Wang, C.; Mo, Z. W.; Chen, X. X.; Zhang, W. X.; Zhang, J. P. Quasi-open Cu(I) sites for efficient CO separation with high O2/H2O tolerance. Nat. Mater. 2024, 23, 116-23.

97. Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015, 6, 8697.

98. Li, H. Z.; Du, D. Y.; Sun, Y.; Wang, F.; Zhang, J. Adjustment of the performance and stability of isostructural zeolitic tetrazolate-imidazolate frameworks. Dalton. Trans. 2020, 49, 4690-3.

99. Panda, T.; Pachfule, P.; Chen, Y.; Jiang, J.; Banerjee, R. Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem. Commun. 2011, 47, 2011-3.

100. Li, M.; Zhang, H.; Wang, F.; Zhang, J. Synthesis of zeolitic tetrazolate-imidazolate frameworks (ZTIFs) in ethylene glycol. Inorg. Chem. Front. 2018, 5, 675-8.

101. Wang, K.; Chen, Y.; Wang, Y.; Chen, J.; Li, J.; Li, L. Synthesis of metal organic frameworks based on multiazole ligands for adsorption and separation of acetylene. Chin. Sci. Bull. 2023, 69, 2278-87.

102. Jiang, J. Q.; Yang, C. X.; Yan, X. P. Postsynthetic ligand exchange for the synthesis of benzotriazole-containing zeolitic imidazolate framework. Chem. Commun. 2015, 51, 6540-3.

103. Erkartal, M.; Incekara, K.; Sen, U. Synthesis of benzotriazole functionalized ZIF-8 by postsynthetic modification for enhanced CH4 and CO2 uptakes. Inorg. Chem. Commun. 2022, 142, 109696.

104. Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite A imidazolate frameworks. Nat. Mater. 2007, 6, 501-6.

105. Wang, B.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008, 453, 207-11.

106. Thompson, J. A.; Blad, C. R.; Brunelli, N. A.; et al. Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem. Mater. 2012, 24, 1930-6.

107. Hou, Q.; Wu, Y.; Zhou, S.; Wei, Y.; Caro, J.; Wang, H. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. Engl. 2019, 58, 327-31.

108. Wang, H.; Pei, X.; Kalmutzki, M. J.; Yang, J.; Yaghi, O. M. Large cages of zeolitic imidazolate frameworks. Acc. Chem. Res. 2022, 55, 707-21.

109. Liu, Q.; Song, Y.; Ma, Y.; et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 2019, 141, 488-96.

110. Åhlén, M.; Jaworski, A.; Strømme, M.; Cheung, O. Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: the effect of linker substitution on uptake capacity and kinetics. Chem. Eng. J. 2021, 422, 130117.

111. Hillman, F.; Jeong, H. K. Linker-doped zeolitic imidazolate frameworks (ZIFs) and their ultrathin membranes for tunable gas separations. ACS. Appl. Mater. Interfaces. 2019, 11, 18377-85.

112. Abraha, Y. W.; Tsai, C. W.; Niemantsverdriet, J. W. H.; Langner, E. H. G. Optimized CO2 capture of the zeolitic imidazolate framework ZIF-8 modified by solvent-assisted ligand exchange. ACS. Omega. 2021, 6, 21850-60.

113. Nam, K. J.; Yu, H. J.; Yu, S.; et al. In situ synthesis of multivariate zeolitic imidazolate frameworks for C2H4/C2H6 kinetic separation. Small. Methods. 2022, 6, e2200772.

114. Liu, X.; Li, Y.; Ban, Y.; et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem. Commun. 2013, 49, 9140-2.

115. Zhang, H.; James, J.; Zhao, M.; et al. Improving hydrostability of ZIF-8 membranes via surface ligand exchange. J. Membr. Sci. 2017, 532, 1-8.

116. Yin, H.; Cay-durgun, P.; Lai, T.; et al. Effect of ZIF-71 ligand-exchange surface modification on biofuel recovery through pervaporation. Polymer 2020, 195, 122379.

117. Xiong, Y.; Deng, N.; Wu, X.; Zhang, Q.; Liu, S.; Sun, G. De novo synthesis of amino-functionalized ZIF-8 nanoparticles: Enhanced interfacial compatibility and pervaporation performance in mixed matrix membranes applying for ethanol dehydration. Sep. Purif. Technol. 2022, 285, 120321.

118. Wang, T.; Guo, C.; Zhang, L.; et al. Comparison of modulation strategies for enhancing the photocatalytic water splitting performance of metal-organic frameworks. J. Phys. Chem. Solids. 2023, 175, 111223.

119. Li, Y.; Wang, K.; Liu, L.; Liu, Y. Superlubricity modulation by molecular structure of two-dimensional zeolite imidazole frameworks. Mater. Today. Nano. 2023, 24, 100414.

120. Qiao, A.; Bennett, T. D.; Tao, H.; et al. A metal-organic framework with ultrahigh glass-forming ability. Sci. Adv. 2018, 4, eaao6827.

121. Frentzel-Beyme, L.; Kloß, M.; Kolodzeiski, P.; Pallach, R.; Henke, S. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption. J. Am. Chem. Soc. 2019, 141, 12362-71.

122. Bumstead, A. M.; Thorne, M. F.; Sapnik, A. F.; Castillo-Blas, C.; Lampronti, G. I.; Bennett, T. D. Investigating the chemical sensitivity of melting in zeolitic imidazolate frameworks. Dalton. Trans. 2022, 51, 13636-45.

123. Tan, Y. X.; Wang, F.; Zhang, J. Design and synthesis of multifunctional metal-organic zeolites. Chem. Soc. Rev. 2018, 47, 2130-44.

124. Williams, K.; Meng, L.; Lee, S.; Lux, L.; Gao, W.; Ma, S. Imparting Brønsted acidity into a zeolitic imidazole framework. Inorg. Chem. Front. 2016, 3, 393-6.

125. Gao, H.; Wei, W.; Dong, L.; et al. Enhanced framework rigidity of a zeolitic metal-azolate via ligand substitution. Crystals 2017, 7, 99.

126. Zhang, J. P.; Chen, X. M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J. Am. Chem. Soc. 2008, 130, 6010-7.

127. Bhadra, B. N.; Seo, P. W.; Khan, N. A.; Jhung, S. H. Hydrophobic cobalt-ethylimidazolate frameworks: phase-pure syntheses and possible application in cleaning of contaminated water. Inorg. Chem. 2016, 55, 11362-71.

128. Deacon, A.; Briquet, L.; Malankowska, M.; et al. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun. Chem. 2022, 5, 18.

129. Zhou, Y.; Ban, Y.; Yang, W. Reversibly phase-transformative zeolitic imidazolate framework-108 and the membrane separation utility. Inorg. Chem. 2022, 61, 17342-52.

130. Lee, Y.; Do, X. H.; Hwang, S. S.; Baek, K. Dual-functionalized ZIF-8 as an efficient acid-base bifunctional catalyst for the one-pot tandem reaction. Catal. Today. 2021, 359, 124-32.

131. Zhou, Y.; Wang, X.; Men, J.; Jia, M.; Liang, C. Adsorption performance of sulfonamide-modified metal–organic frameworks (MOFs) for Co(II) in aqueous solution. J. Radioanal. Nucl. Chem. 2022, 331, 3965-77.

132. Wang, X.; Zhou, Y.; Men, J.; Liang, C.; Jia, M. Removal of Co(II) from aqueous solutions with amino acid-modified hydrophilic metal-organic frameworks. Inorg. Chim. Acta. 2023, 547, 121337.

133. Weng, P.; Liu, K.; Yuan, M.; et al. Development of a ZIF-91-porous-liquid-based composite hydrogel dressing system for diabetic wound healing. Small 2023, 19, e2301012.

134. Huang, A.; Caro, J. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angew. Chem. Int. Ed. Engl. 2011, 50, 4979-82.

135. Feng, L.; Wang, K. Y.; Lv, X. L.; et al. Imprinted apportionment of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 14524-9.

136. Yu, D.; Shao, Q.; Song, Q.; et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat. Commun. 2020, 11, 927.

137. Ebrahimi, Z.; Rad, M.; Safarifard, V.; Moradi, M. Solvent-assisted ligand exchange as a post-synthetic surface modification approach of Zn-based (ZIF-7, ZIF-8) and Co-based (ZIF-9, ZIF-67) zeolitic frameworks for energy storage application. J. Mol. Liq. 2022, 364, 120018.

138. Karagiaridi, O.; Lalonde, M. B.; Bury, W.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J. Am. Chem. Soc. 2012, 134, 18790-6.

139. Tu, M.; Wannapaiboon, S.; Fischer, R. A. Inter-conversion between zeolitic imidazolate frameworks: a dissolution–recrystallization process. J. Mater. Chem. A. 2020, 8, 13710-7.

140. Martínez-Izquierdo, L.; Téllez, C.; Coronas, J. Highly stable Pebax® Renew® thin-film nanocomposite membranes with metal organic framework ZIF-94 and ionic liquid [Bmim][BF4] for CO2 capture. J. Mater. Chem. A. 2022, 10, 18822-33.

141. Sánchez-Laínez, J.; Veiga, A.; Zornoza, B.; et al. Tuning the separation properties of zeolitic imidazolate framework core–shell structures via post-synthetic modification. J. Mater. Chem. A. 2017, 5, 25601-8.

142. Erkartal, M.; Erkilic, U.; Tam, B.; et al. From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chem. Commun. 2017, 53, 2028-31.

143. Sadakiyo, M.; Kuramoto, T.; Kato, K.; Yamauchi, M. Introduction of an amino group on zeolitic imidazolate framework through a ligand-exchange reaction. Chem. Lett. 2017, 46, 1004-6.

144. Niu, X.; Zhao, R.; Yan, S.; et al. Chiral MOFs encapsulated by polymers with poly-metallic coordination as chiral biosensors. Mikrochim. Acta. 2023, 190, 230.

145. Ban, Y.; Peng, Y.; Zhang, Y.; et al. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Micropor. Mesopor. Mat. 2016, 219, 190-8.

146. Marreiros, J.; Van, D. L.; Fleury, G.; et al. Vapor-phase linker exchange of the metal-organic framework ZIF-8: a solvent-free approach to post-synthetic modification. Angew. Chem. Int. Ed. Engl. 2019, 58, 18471-5.

147. Jiang, Z.; Xue, W.; Huang, H.; Zhu, H.; Sun, Y.; Zhong, C. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chem. Eng. J. 2023, 454, 140093.

148. Löffler, T.; Ludwig, A.; Rossmeisl, J.; Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. Engl. 2021, 60, 26894-903.

149. Pan, Q.; Zhang, L.; Feng, R.; et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science 2021, 374, 984-9.

150. Ren, J.; Zhang, Y.; Zhao, D.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022, 608, 62-8.

151. Fu, W.; Li, H.; Huang, Y.; Ning, Z.; Sun, J. A new strategy to overcome the strength-ductility trade off of high entropy alloy. Scripta. Mater. 2022, 214, 114678.

152. Sun, W.; Tang, X.; Wang, Y. Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries. Electrochem. Energ. Rev. 2020, 3, 127-54.

153. Zhou, K.; Mousavi, B.; Luo, Z.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A. 2017, 5, 952-7.

154. Xu, W.; Chen, H.; Jie, K.; Yang, Z.; Li, T.; Dai, S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. Engl. 2019, 58, 5018-22.

155. Hou, Q.; Zhou, S.; Wei, Y.; Caro, J.; Wang, H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 2020, 142, 9582-6.

156. Sapnik, A. F.; Geddes, H. S.; Reynolds, E. M.; Yeung, H. H.; Goodwin, A. L. Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues. Chem. Commun. 2018, 54, 9651-4.

157. Ghadiri, M.; Aroujalian, A.; Pazani, F.; Salimi, P. Tailoring filler/gas vs. filler/polymer interactions via optimizing Co/Zn ratio in bimetallic ZIFs and decorating on GO nanosheets for enhanced CO2 separation. Sep. Purif. Technol. 2024, 330, 125315.

158. Zhou, C.; Chen, M.; Dong, C.; et al. The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation. Nano. Energy. 2022, 98, 107332.

159. Leonel, G. J.; Lennox, C. B.; Marrett, J. M.; Friščić, T.; Navrotsky, A. Crystallographic and compositional dependence of thermodynamic stability of [Co(II), Cu(II), and Zn(II)] in 2-methylimidazole-containing zeolitic imidazolate frameworks. Chem. Mater. 2023, 35, 7189-95.

160. Cairns, A. B.; Goodwin, A. L. Structural disorder in molecular framework materials. Chem. Soc. Rev. 2013, 42, 4881-93.

161. Buckingham, M. A.; Skelton, J. M.; Lewis, D. J. Synthetic strategies toward high entropy materials: atoms-to-lattices for maximum disorder. Cryst. Growth. Des. 2023, 23, 6998-7009.

162. Krokidas, P.; Moncho, S.; Brothers, E. N.; Castier, M.; Economou, I. G. Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study. Phys. Chem. Chem. Phys. 2018, 20, 4879-92.

163. Pambudi, F. I.; Prasetyo, N. Theoretical investigation on the structure of mixed-metal zeolitic imidazolate framework and its interaction with CO2. Comp. Mater. Sci. 2022, 210, 111033.

164. Khudhair, E. M.; Kareem, Y. S.; Ammar, S. H.; Mahdi, A. S. Bimetallic (Fe/Zn-ZIF-8) crystals: fabrication and adsorptive removal activity. Mater. Today. Proc.2023.

165. Geng, R.; Tang, H.; Ma, Q.; Liu, L.; Feng, W.; Zhang, Z. Bimetallic Ag/Zn-ZIF-8: an efficient and sensitive probe for Fe3+ and Cu2+ detection. Colloid. Surface. A. 2022, 632, 127755.

166. Aniruddha, R.; Shama, V. M.; Sreedhar, I.; Patel, C. M. Bimetallic ZIFs based on Ce/Zn and Ce/Co combinations for stable and enhanced carbon capture. J. Clean. Prod. 2022, 350, 131478.

167. Zhang, D.; Luo, N.; Xue, Z.; Bai, Y.; Xu, J. Effect of open metal sites in cobalt-based bimetallic metal–organic framework nanoparticles-coated quartz crystal microbalance (QCM) for humidity detection. ACS. Appl. Nano. Mater. 2022, 5, 2147-55.

168. Duan, S.; Liu, J.; Wu, L.; et al. U(VI) immobilization properties on porous dual metallic M/Co(II) zeolitic imidazolate framework (ZIF-67) (M = Fe(III), Ni(II), Cu(II)) nanoparticles. Sep. Purif. Technol.2022, 300, 121931.

169. Leonel, G. J.; Subramani, T.; Navrotsky, A. Systematic investigation of CO2 adsorption energetics in metal–organic frameworks based on imidazolyl linkers. J. Phys. Chem. C. 2023, 127, 19973-8.

170. Pattengale, B.; SantaLucia, D. J.; Yang, S.; et al. Direct observation of node-to-node communication in zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2018, 140, 11573-6.

171. Baghban, A.; Habibzadeh, S.; Zokaee, A. F. Bandgaps of noble and transition metal/ZIF-8 electro/catalysts: a computational study. RSC. Adv. 2020, 10, 22929-38.

172. Cheng, N.; Ren, L.; Xu, X.; Du, Y.; Dou, S. X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy. Mater. 2018, 8, 1801257.

173. Jadhav, H. S.; Bandal, H. A.; Ramakrishna, S.; Kim, H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Adv. Mater. 2022, 34, e2107072.

174. Shahzad, A.; Zulfiqar, F.; Arif, N. M. Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: a critical review. Coord. Chem. Rev. 2023, 477, 214925.

175. Wang, S.; Luo, L.; Wu, A.; et al. Recent advances in tailoring zeolitic imidazolate frameworks (ZIFs) and their derived materials based on hard template strategy for multifunctional applications. Coord. Chem. Rev. 2024, 498, 215464.

176. Fan, Y.; Li, S.; Wang, Y.; et al. Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol. Nanoscale 2020, 12, 18296-304.

177. Sankar, S. S.; Manjula, K.; Keerthana, G.; Ramesh, B. B.; Kundu, S. Highly stable trimetallic (Co, Ni, and Fe) zeolite imidazolate framework microfibers: an excellent electrocatalyst for water oxidation. Cryst. Growth. Des. 2021, 21, 1800-9.

178. Thenrajan, T.; Selvasundarasekar, S. S.; Kundu, S.; Wilson, J. Novel electrochemical sensing of catechins in raw green tea extract via a trimetallic zeolitic imidazolate fibrous framework. ACS. Omega. 2022, 7, 19754-63.

179. Dong, Q.; Yao, Y.; Cheng, S.; et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 2022, 605, 470-6.

180. Jiang, H.; Jin, S.; Wang, C.; et al. Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 2019, 141, 5481-9.

181. Yao, Y.; Liu, Z.; Xie, P.; et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.

182. Brozek, C. K.; Dincă, M. Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5456-67.

183. Shao, W.; Chen, Y. R.; Xie, F.; Zhang, H.; Wang, H. T.; Chang, N. Facile construction of a ZIF-67/AgCl/Ag heterojunction via chemical etching and surface ion exchange strategy for enhanced visible light driven photocatalysis. RSC. Adv. 2020, 10, 38174-83.

184. Yang, K.; Long, L.; Feng, Y.; et al. Tunable regulation of metal-semiconductor heterostructures toward Ag/ZnO hybrids for electromagnetic wave absorption. J. Alloys. Compd. 2022, 926, 166899.

185. Chen, Y.; Fan, S.; Qiu, B.; et al. Enhanced catalytic performance of a membrane microreactor by immobilizing ZIF-8-derived nano-Ag via ion exchange. Ind. Eng. Chem. Res. 2020, 59, 19553-63.

186. Chen, X. L.; Lu, J.; Jiang, Y.; et al. Active sites in situ implanted hybrid zeolitic imidazolate frameworks for a water oxidation catalyst. Inorg. Chem. 2022, 61, 15801-5.

187. Mphuthi, L. E.; Maseme, M. R.; Langner, E. H. G. Ti(IV)-exchanged nano-ZIF-8 and nano-ZIF-67 for enhanced photocatalytic oxidation of hydroquinone. J. Inorg. Organomet. Polym. 2022, 32, 2664-78.

188. Mphuthi, L. E.; Erasmus, E.; Langner, E. H. G. Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe(II) for enhanced photocatalytic performance. ACS. Omega. 2021, 6, 31632-45.

189. Wan, J.; Zou, J. M.; Zhou, S. J.; et al. A bimetallic (Ni/Co) metal-organic framework with excellent oxidase-like activity for colorimetric sensing of ascorbic acid. Anal. Methods. 2023, 15, 1819-25.

190. Qiu, B.; Wang, Y.; Chen, J.; et al. Catalytic membrane micro-reactor with nano Cu/ZIF-8 assembly in membrane pores by flowing synthesis combining partial ion-exchange. J. Membr. Sci. 2022, 644, 120183.

191. Fei, H.; Cahill, J. F.; Prather, K. A.; Cohen, S. M. Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem. 2013, 52, 4011-6.

192. Moscoso, F.; Rodriguez-Albelo, L.; Ruiz-Salvador, A.; Lopes-Costa, T.; Pedrosa, J. Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+ and its incorporation into PDMS films for selective sulfide optical sensing. Mater. Today. Chem. 2023, 28, 101366.

193. Geng, W.; Chen, W.; Li, G.; et al. Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping. ChemSusChem 2020, 13, 4035-40.

194. Song, F.; Cao, Y.; Zhao, Y.; et al. Ion-exchanged ZIF-67 synthesized by one-step method for enhancement of CO2 adsorption. J. Nanomater. 2020, 2020, 1-11.

195. Li, Z.; Song, L. F.; Sharma, G.; Koca, F. B.; Merz, K. M. J. Accurate metal-imidazole interactions. J. Chem. Theory. Comput. 2023, 19, 619-25.

196. Wang, F.; Liu, Z. S.; Yang, H.; Tan, Y. X.; Zhang, J. Hybrid zeolitic imidazolate frameworks with catalytically active TO4 building blocks. Angew. Chem. Int. Ed. Engl. 2011, 50, 450-3.

197. Xu, Y. T.; Ye, Z. M.; Ye, J. W.; et al. Non-3d metal modulation of a cobalt imidazolate framework for excellent electrocatalytic oxygen evolution in neutral media. Angew. Chem. Int. Ed. Engl. 2019, 58, 139-43.

198. Li, Y.; Wu, X.; Zhang, H.; Zhang, J. HZIF-based hybrids for electrochemical energy applications. Nanoscale 2019, 11, 15763-9.

199. Dey, C.; Banerjee, R. Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF). Chem. Commun. 2013, 49, 6617-9.

200. Wang, Y.; Wang, F.; Zhang, J. Fast synthesis of hybrid zeolitic imidazolate frameworks (HZIFs) with exceptional acid–base stability from ZIF-8 precursors. Cryst. Growth. Des. 2019, 19, 3430-4.

201. Li, X.; Zhang, F.; Han, X.; et al. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano. Res. 2023, 16, 8003-11.

202. Simonov, A.; Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 2020, 4, 657-73.

203. Boström, H. L. B.; Goodwin, A. L. Hybrid perovskites, metal-organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc. Chem. Res. 2021, 54, 1288-97.

204. Meekel, E. G.; Schmidt, E. M.; Cameron, L. J.; et al. Truchet-tile structure of a topologically aperiodic metal-organic framework. Science 2023, 379, 357-61.

205. Yaghi, O. M.; Rong, Z. Decoding complex order in reticular frameworks. Science 2023, 379, 330-1.

206. Desai, A. V.; Lizundia, E.; Laybourn, A.; et al. Green synthesis of reticular materials. Adv, Funct, Mater,2023.

207. Wang, J.; Chaemchuen, S.; Klomkliang, N.; Verpoort, F. In situ thermal solvent-free synthesis of zeolitic imidazolate frameworks with high crystallinity and porosity for effective adsorption and catalytic applications. Cryst. Growth. Des. 2021, 21, 5349-59.

208. Shi, G.; Xu, W.; Wang, J.; Klomkliang, N.; Mousavi, B.; Chaemchuen, S. Thermochemical transformation in the single-step synthesis of zeolitic imidazole frameworks under solvent-free conditions. Dalton. Trans. 2020, 49, 2811-8.

209. Zheng, Z.; Rong, Z.; Rampal, N.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. Engl. 2023, 62, e202311983.

210. Zheng, Z.; Zhang, O.; Nguyen, H. L.; et al. ChatGPT research group for optimizing the crystallinity of MOFs and COFs. ACS. Cent. Sci. 2023, 9, 2161-70.

211. Zheng, Z.; Zhang, O.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 2023, 145, 18048-62.

212. León-Alcaide, L.; López-Cabrelles, J.; Esteve-Rochina, M.; et al. Implementing mesoporosity in zeolitic imidazolate frameworks through clip-off chemistry in heterometallic iron-zinc ZIF-8. J. Am. Chem. Soc. 2023, 145, 23249-56.

213. Huang, Y.; Qin, G.; Cui, T.; Zhao, C.; Ren, J.; Qu, X. A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses. Nat. Commun. 2023, 14, 4647.

214. Huang, C.; Su, X.; Gu, X.; Liu, R.; Zhu, H. Bimetallic oxide nanoparticles confined in ZIF-67-derived carbon for highly selective oxidation of saturated C–H bond in alkyl arenes. Appl. Organomet. Chem. 2021, 35, e6047.

215. Li, R.; Chen, T.; Lu, J.; et al. Metal-organic frameworks doped with metal ions for efficient sterilization: Enhanced photocatalytic activity and photothermal effect. Water. Res. 2023, 229, 119366.

216. Zhang, J.; Wu, T.; Zhou, C.; Chen, S.; Feng, P.; Bu, X. Zeolitic boron imidazolate frameworks. Angew. Chem. Int. Ed. Engl. 2009, 48, 2542-5.

217. Yi, B.; Zhao, H.; Zhang, Y.; et al. A direct solvent-free conversion approach to prepare mixed-metal metal-organic frameworks from doped metal oxides. Chem. Commun. 2021, 57, 3587-90.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/