REFERENCES

1. Gupta, A.; Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy. Mater. 2020, 10, 2001972.

2. Li, L.; Wang, M.; Wang, J.; et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries. J. Mater. Chem. A. 2020, 8, 8033-40.

3. Hu, A.; Li, F.; Chen, W.; et al. Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy. Mater. 2022, 12, 2202432.

4. Hao, Z.; Wu, Y.; Zhao, Q.; et al. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102938.

5. Tu, H.; Li, L.; Wang, Z.; et al. Tailoring electrolyte solvation for LiF-rich solid electrolyte interphase toward a stable Li anode. ACS. Nano. 2022, 16, 16898-908.

6. Hwang, G.; Sitapure, N.; Moon, J.; Lee, H.; Hwang, S.; Sang-il, K. J. Model predictive control of lithium-ion batteries: development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms. Chem. Eng. J. 2022, 435, 134768.

7. Sarkar, S.; Zohra, H. S.; El-halwagi, M. M.; Khan, F. I. Electrochemical models: methods and applications for safer lithium-ion battery operation. J. Electrochem. Soc. 2022, 169, 100501.

8. Pang, H.; Wu, L.; Liu, J.; Liu, X.; Liu, K. Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions. J. Energy. Chem. 2023, 78, 1-12.

9. Cao, T.; Huang, S.; Sun, Y.; et al. Fluorine-rich interphase and desolvation regulation for a long-life and high-rate TiS2-based Li-metal battery. J. Phys. Chem. C. 2022, 126, 5122-30.

10. Wang, Z.; Qi, F.; Yin, L.; et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy. Mater. 2020, 10, 1903843.

11. Wang, Y.; Tu, H.; Sun, A.; et al. Dual Li+ transport enabled by BN-assisted solid-polymer-electrolyte for high-performance lithium batteries. Chem. Eng. J. 2023, 475, 146414.

12. Wang, L.; Yi, S.; Liu, Q.; et al. Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries. Energy. Storage. Mater. 2023, 63, 102961.

13. Zhang, J.; He, R.; Zhuang, Q.; et al. Tuning 4f-center electron structure by Schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery. Adv. Sci. 2022, 9, e2202244.

14. Chen, J.; Li, Z.; Sun, N.; et al. A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode. ACS. Energy. Lett. 2022, 7, 1594-603.

15. Zhang, N.; Deng, T.; Zhang, S.; et al. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, e2107899.

16. Xu, J.; Zhang, J.; Pollard, T. P.; et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694-700.

17. Feng, Y.; Zhou, L.; Ma, H.; et al. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy. Environ. Sci. 2022, 15, 1711-59.

18. Suo, L.; Borodin, O.; Gao, T.; et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938-43.

19. Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

20. Chen, S.; Zheng, J.; Mei, D.; et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, e1706102.

21. Chu, F.; Deng, R.; Wu, F. Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy. Storage. Mater. 2023, 56, 141-54.

22. Sun, N.; Li, R.; Zhao, Y.; et al. Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low-temperature lithium metal battery. Adv. Energy. Mater. 2022, 12, 2200621.

23. Ma, T.; Ni, Y.; Wang, Q.; et al. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207927.

24. Tian, C.; Qin, K.; Suo, L. Concentrated electrolytes for rechargeable lithium metal batteries. Mater. Futures. 2023, 2, 012101.

25. Yu, Z.; Balsara, N. P.; Borodin, O.; et al. Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS. Energy. Lett. 2022, 7, 461-70.

26. Liu, W.; Yi, C.; Li, L.; et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. Engl. 2021, 60, 12931-40.

27. Hu, Y.; Li, L.; Tu, H.; et al. Janus electrolyte with modified Li+ solvation for high-performance solid-state lithium batteries. Adv. Funct. Mater. 2022, 32, 2203336.

28. Du, L.; Zhang, B.; Yang, C.; Cui, L.; Mai, L.; Xu, L. Leaf-inspired quasi-solid electrolyte enables uniform lithium deposition and suppressed lithium-electrolyte reactions for lithium metal batteries. Energy. Storage. Mater. 2023, 61, 102914.

29. Zheng, G.; Yan, T.; Hong, Y.; et al. A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries. Nat. Commun. 2023, 14, 2268.

30. Zeng, X.; Yin, Y.; Shi, Y.; et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem 2018, 4, 298-307.

31. Kim, M. S.; Zhang, Z.; Rudnicki, P. E.; et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 2022, 21, 445-54.

32. Kim, M. S.; Zhang, Z.; Wang, J.; et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS. Nano. 2023, 17, 3168-80.

33. Tu, H.; He, Z.; Sun, A.; et al. Superior Li+ kinetics by “Low-Activity-Solvent” engineering for stable lithium metal batteries. Nano. Lett. 2024, 24, 5714-21.

34. Huang, X.; Li, R.; Sun, C.; et al. Solvent-assisted hopping mechanism enables ultrafast charging of lithium-ion batteries. ACS. Energy. Lett. 2022, 7, 3947-57.

35. Sun, C.; Ji, X.; Weng, S.; et al. 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 2022, 34, e2206020.

36. Chen, Y.; Yu, Z.; Rudnicki, P.; et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 2021, 143, 18703-13.

37. Park, E.; Park, J.; Lee, K.; et al. Exploiting the steric effect and low dielectric constant of 1,2-dimethoxypropane for 4.3 V lithium metal batteries. ACS. Energy. Lett. 2023, 8, 179-88.

38. Yao, Y. X.; Chen, X.; Yan, C.; et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. Engl. 2021, 60, 4090-7.

39. Li, Z.; Rao, H.; Atwi, R.; et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 868.

40. Yu, Z.; Rudnicki, P. E.; Zhang, Z.; et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy. 2022, 7, 94-106.

41. Wang, H.; Yu, Z.; Kong, X.; et al. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, e2008619.

42. Tan, L.; Chen, S.; Chen, Y.; et al. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203693.

43. Ruan, D.; Tan, L.; Chen, S.; et al. Solvent versus anion chemistry: unveiling the structure-dependent reactivity in tailoring electrochemical interphases for lithium-metal batteries. JACS. Au. 2023, 3, 953-63.

44. Shi, J.; Xu, C.; Lai, J.; et al. An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218151.

45. Zhao, Y.; Zhou, T.; Ashirov, T.; et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 2022, 13, 2575.

46. Dou, Q.; Yao, N.; Pang, W. K.; et al. Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes. Energy. Environ. Sci. 2022, 15, 4572-83.

47. Tanibata, N.; Morimoto, R.; Nishikawa, K.; Takeda, H.; Nakayama, M. Asymmetry in the solvation-desolvation resistance for Li metal batteries. Anal. Chem. 2020, 92, 3499-502.

48. Feng, Y.; Zhong, B.; Zhang, R.; et al. Achieving high-power and dendrite-free lithium metal anodes via interfacial ion-transport-rectifying pump. Adv. Energy. Mater. 2023, 13, 2203912.

49. Yao, S.; Yang, Y.; Liang, Z.; et al. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Maters. 2023, 33, 2212466.

50. Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2018, 2, 2117-32.

51. Chang, Z.; Qiao, Y.; Yang, H.; et al. Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy. Environ. Sci. 2020, 13, 4122-31.

52. Jiang, C.; Gu, Y.; Tang, M.; et al. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS. Appl. Mater. Interfaces. 2020, 12, 10461-70.

53. Li, L.; Tu, H.; Wang, J.; et al. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics. Adv. Funct. Mater. 2023, 33, 2212499.

54. Xu, Y.; Gao, L.; Shen, L.; et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020, 3, 1685-700.

55. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776-89.

56. Li, C.; Lu, R.; Amin, K.; et al. Robust anion-shielding metal-organic frameworks based composite interlayers to achieve uniform Li deposition for stable Li-metal anode. ChemElectroChem 2022, 9, e202101596.

57. Yang, Y.; Yao, S.; Liang, Z.; et al. A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS. Energy. Lett. 2022, 7, 885-96.

58. Wang, X.; Wang, H.; Liu, M.; Li, W. In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism. Small 2020, 16, e2000769.

59. Wang, J.; Hu, H.; Duan, S.; et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater. 2022, 32, 2110468.

60. Zhang, W.; Shen, Z.; Li, S.; et al. Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries. Adv. Funct. Mater. 2020, 30, 2003800.

61. Wang, J.; Zhang, J.; Wu, J.; et al. Interfacial “Single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv. Mater. 2023, 35, e2302828.

62. Wang, J.; Zhang, J.; Cheng, S.; et al. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano. Lett. 2021, 21, 3245-53.

63. Wen, P.; Liu, Y.; Mao, J.; et al. Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries. J. Energy. Chem. 2023, 79, 340-7.

64. Xu, K. Interfaces and interphases in batteries. J. Power. Sources. 2023, 559, 232652.

65. Tu, H.; Li, L.; Hu, Y.; et al. Non-flammable liquid polymer-in-salt electrolyte enabling secure and dendrite-free lithium metal battery. Chem. Eng. J. 2022, 434, 134647.

66. Fong, R.; von, S. U.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990, 137, 2009-13.

67. Wang, L.; Menakath, A.; Han, F.; et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat. Chem. 2019, 11, 789-96.

68. Hu, Z.; Zhang, S.; Dong, S.; Li, Q.; Cui, G.; Chen, L. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization. Chem. Mater. 2018, 30, 4039-47.

69. Wang, Z.; Zhang, F.; Sun, Y.; et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy. Mater. 2021, 11, 2003752.

70. Xie, J.; Sun, S. Y.; Chen, X.; et al. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202204776.

71. Zhu, C.; Sun, C.; Li, R.; et al. Anion–diluent pairing for stable high-energy Li metal batteries. ACS. Energy. Lett. 2022, 7, 1338-47.

72. Sun, A.; Tu, H.; Sun, Z.; et al. Dual-halide interphase enabling high-performance lithium metal batteries in wide-temperature range. ACS. Energy. Lett. 2024, 9, 2545-53.

73. Zhang, S.; Li, R.; Hu, N.; et al. Tackling realistic Li+ flux for high-energy lithium metal batteries. Nat. Commun. 2022, 13, 5431.

74. Liu, S.; Ji, X.; Piao, N.; et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. Engl. 2021, 60, 3661-71.

75. Zhang, W.; Wu, Q.; Huang, J.; et al. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, e2001740.

76. Yan, C.; Li, H. R.; Chen, X.; et al. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141, 9422-9.

77. Wang, Q.; Yao, Z.; Zhao, C.; et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.

78. Wu, D.; He, J.; Liu, J.; et al. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy. Mater. 2022, 12, 2200337.

79. Mao, M.; Ji, X.; Wang, Q.; et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 2023, 14, 1082.

80. Zeng, H.; Yu, K.; Li, J.; et al. Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries. ACS. Nano. 2024, 18, 1969-81.

81. Wang, J.; Yang, J.; Xiao, Q.; et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 2021, 31, 2007434.

82. Wang, Z.; Zhang, H.; Xu, J.; et al. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2112598.

83. Yan, C.; Cheng, X. B.; Tian, Y.; et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 2018, 30, e1707629.

84. Li, Z.; Yu, R.; Weng, S.; Zhang, Q.; Wang, X.; Guo, X. Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 2023, 14, 482.

85. Lin, H.; Zhang, Z.; Wang, Y.; Zhang, X. L.; Tie, Z.; Jin, Z. Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102735.

86. Guan, W.; Hu, X.; Liu, Y.; et al. Advances in the emerging gradient designs of Li metal hosts. Research 2022, 2022, 9846537.

87. Bai, M.; Xie, K.; Yuan, K.; et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers. Adv. Mater. 2018, 30, e1801213.

88. Li, Q.; Zhu, S.; Lu, Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

89. Wang, J.; Li, L.; Hu, H.; et al. Toward dendrite-free metallic lithium anodes: from structural design to optimal electrochemical diffusion kinetics. ACS. Nano. 2022, 16, 17729-60.

90. Yi, J.; Chen, J.; Yang, Z.; et al. Facile Patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries. Adv. Energy. Mater. 2019, 9, 1901796.

91. Shen, X.; Zhao, G.; Yu, X.; Huang, H.; Wang, M.; Zhang, N. Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. J. Mater. Chem. A. 2021, 9, 21695-702.

92. Wang, X.; Pan, Z.; Wu, Y.; et al. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale 2018, 10, 16562-7.

93. Gu, Y.; Li, C.; Wang, Y.; Lu, W.; Shang, H.; Sun, B. Precise construction of lithiophilic sites by diyne-linked phthalocyanine polymer for suppressing metallic lithium dendrite. Dalton. Trans. 2022, 51, 5828-33.

94. Duan, H.; Zhang, J.; Chen, X.; et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries. J. Am. Chem. Soc. 2018, 140, 18051-7.

95. Huang, K.; Li, Z.; Xu, Q.; Liu, H.; Li, H.; Wang, Y. Lithiophilic CuO nanoflowers on Ti-mesh inducing lithium lateral plating enabling stable lithium-metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy. Mater. 2019, 9, 1900853.

96. Chen, X.; Li, B.; Zhao, C.; Zhang, R.; Zhang, Q. Synergetic coupling of lithiophilic sites and conductive scaffolds for dendrite-free lithium metal anodes. Small. Methods. 2020, 4, 1900177.

97. Shen, X.; Shi, S.; Li, B.; et al. Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2206388.

98. Gu, J.; Zhu, Q.; Shi, Y.; et al. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS. Nano. 2020, 14, 891-8.

99. Xu, K.; Zhu, M.; Wu, X.; et al. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy. Storage. Mater. 2019, 23, 587-93.

100. Yang, Z.; Dang, Y.; Zhai, P.; et al. Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv. Energy. Mater. 2022, 12, 2103368.

101. Wang, J.; Zhang, J.; Duan, S.; et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano. Lett. 2022, 22, 8008-17.

102. Lee, H.; Sitapure, N.; Hwang, S.; Kwon, J. S. Multiscale modeling of dendrite formation in lithium-ion batteries. Comput. Chem. Eng. 2021, 153, 107415.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/