REFERENCES

1. Brimioulle R, Lenhart D, Maturi MM, Bach T. Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed Engl 2015;54:3872-90.

2. Yao W, Bergamino EAB, Ngai MY. Asymmetric photocatalysis enabled by chiral organocatalysts. ChemCatChem 2022;14:e202101292.

3. Jiang C, Chen W, Zheng WH, Lu H. Advances in asymmetric visible-light photocatalysis, 2015-2019. Org Biomol Chem 2019;17:8673-89.

4. Zarra S, Wood DM, Roberts DA, Nitschke JR. Molecular containers in complex chemical systems. Chem Soc Rev 2015;44:419-32.

5. Morimoto M, Bierschenk SM, Xia KT, Bergman RG, Raymond KN, Toste FD. Advances in supramolecular host-mediated reactivity. Nat Catal 2020;3:969-84.

6. Ramamurthy V, Gupta S. Supramolecular photochemistry: from molecular crystals to water-soluble capsules. Chem Soc Rev 2015;44:119-35.

7. Ramamurthy V, Sivaguru J. Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem Rev 2016;116:9914-93.

8. Gao W, Zhang H, Jin G. Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages. Coordin Chem Rev 2019;386:69-84.

9. Liu Y, Xuan W, Cui Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 2010;22:4112-35.

10. Hao Y, Lu YL, Jiao Z, Su CY. Photocatalysis meets confinement: an emerging opportunity for photoinduced organic transformations. Angew Chem Int Ed Engl 2024;63:e202317808.

11. Ballester P, Wang QQ, Gaeta C. Supramolecular approaches to mediate chemical reactivity. Beilstein J Org Chem 2022;18:1463-5.

12. Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis. Chem Rev 2023;123:5225-61.

13. Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021;50:7681-724.

14. Meeuwissen J, Reek JN. Supramolecular catalysis beyond enzyme mimics. Nat Chem 2010;2:615-21.

15. Hong CM, Bergman RG, Raymond KN, Toste FD. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc Chem Res 2018;51:2447-55.

16. Jing X, He C, Zhao L, Duan C. Photochemical properties of host-guest supramolecular systems with structurally confined metal-organic capsules. Acc Chem Res 2019;52:100-9.

17. Pascanu V, González Miera G, Inge AK, Martín-Matute B. Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 2019;141:7223-34.

18. Zhang Q, Catti L, Tiefenbacher K. Catalysis inside the hexameric resorcinarene capsule. Acc Chem Res 2018;51:2107-14.

19. Wang MX. Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition. Acc Chem Res 2012;45:182-95.

20. Fang Y, Powell JA, Li E, et al. Catalytic reactions within the cavity of coordination cages. Chem Soc Rev 2019;48:4707-30.

21. Qin B, Yin Z, Tang X, et al. Supramolecular polymer chemistry: from structural control to functional assembly. Prog Polym Sci 2020;100:101167.

22. Vallavoju N, Sivaguru J. Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem Soc Rev 2014;43:4084-101.

23. Yang C, Inoue Y. Supramolecular photochirogenesis. Chem Soc Rev 2014;43:4123-43.

24. Nishijima M, Wada T, Mori T, Pace TC, Bohne C, Inoue Y. Highly enantiomeric supramolecular [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by human serum albumin. J Am Chem Soc 2007;129:3478-9.

25. Wada T, Nishijima M, Fujisawa T, et al. Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. J Am Chem Soc 2003;125:7492-3.

26. Ishida Y, Kai Y, Kato SY, et al. Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment. Angew Chem Int Ed Engl 2008;47:8241-5.

27. Ishida Y, Matsuoka Y, Kai Y, et al. Metastable liquid crystal as time-responsive reaction medium: aging-induced dual enantioselective control. J Am Chem Soc 2013;135:6407-10.

28. Ji J, Wei X, Wu W, Yang C. Asymmetric photoreactions in supramolecular assemblies. Acc Chem Res 2023;56:1896-907.

29. Wei X, Wu W, Matsushita R, et al. Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J Am Chem Soc 2018;140:3959-74.

30. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev 1998;98:1875-918.

31. Nakamura A, Inoue Y. Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by gamma-cyclodextrin. J Am Chem Soc 2003;125:966-72.

32. Nakamura A, Inoue Y. Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within gamma-cyclodextrin cavity through chemical modification. inverted product distribution and enhanced enantioselectivity. J Am Chem Soc 2005;127:5338-9.

33. Yang C, Nakamura A, Wada T, Inoue Y. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by gamma-cyclodextrins with a flexible or rigid cap. Org Lett 2006;8:3005-8.

34. Yang C, Mori T, Origane Y, et al. Highly stereoselective photocyclodimerization of alpha-cyclodextrin-appended anthracene mediated by gamma-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J Am Chem Soc 2008;130:8574-5.

35. Ke C, Yang C, Mori T, Wada T, Liu Y, Inoue Y. Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew Chem Int Ed Engl 2009;48:6675-7.

36. Luo L, Liao GH, Wu XL, Lei L, Tung CH, Wu LZ. Gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate. J Org Chem 2009;74:3506-15.

37. Yang C, Ke C, Liang W, et al. Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host. J Am Chem Soc 2011;133:13786-9.

38. Yao J, Yan Z, Ji J, et al. Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin. J Am Chem Soc 2014;136:6916-9.

39. Ji J, Wu W, Liang W, et al. An ultimate stereocontrol in supramolecular photochirogenesis: photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers. J Am Chem Soc 2019;141:9225-38.

40. Kanagaraj K, Liang W, Rao M, et al. pH-controlled chirality inversion in enantiodifferentiating photocyclodimerization of 2-antharacenecarboxylic acid mediated by γ-cyclodextrin derivatives. Org Lett 2020;22:5273-8.

41. Wei X, Raj AM, Ji J, et al. Reversal of regioselectivity during photodimerization of 2-anthracenecarboxylic acid in a water-soluble organic cavitand. Org Lett 2019;21:7868-72.

42. Rau H. Asymmetric photochemistry in solution. Chem Rev 1983;83:535-47.

43. Inoue Y. Asymmetric photochemical reactions in solution. Chem Rev 1992;92:741-70.

44. Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem Rev 2022;122:1654-716.

45. Koodanjeri S, Joy A, Ramamurthy V. Asymmetric induction with cyclodextrins: photocyclization of tropolone alkyl ethers. Tetrahedron 2000;56:7003-9.

46. Shailaja J, Karthikeyan S, Ramamurthy V. Cyclodextrin mediated solvent-free enantioselective photocyclization of N-alkyl pyridones. Tetrahedron Lett 2002;43:9335-9.

47. Kaliappan R, Ramamurthy V. Chiral photochemistry within natural and functionalized cyclodextrins: chiral induction in photocyclization products from carbonyl compounds. J Photoch Photobio A 2009;207:144-52.

48. Mansour AT, Buendia J, Xie J, et al. β-cyclodextrin-mediated enantioselective photochemical electrocyclization of 1,3-dihydro-2H-azepin-2-one. J Org Chem 2017;82:9832-6.

49. Fukuhara G, Mori T, Wada T, Inoue Y. The first supramolecular photosensitization of enantiodifferentiating bimolecular reaction: anti-Markovnikov photoaddition of methanol to 1,1-diphenylpropene sensitized by modified beta-cyclodextrin. Chem Commun 2006;28:1712-4.

50. Fukuhara G, Mori T, Inoue Y. Competitive enantiodifferentiating anti-Markovnikov photoaddition of water and methanol to 1,1-diphenylpropene using a sensitizing cyclodextrin host. J Org Chem 2009;74:6714-27.

51. Dong J, Liu Y, Cui Y. Supramolecular chirality in metal-organic complexes. Acc Chem Res 2021;54:194-206.

52. Jin Y, Zhang Q, Zhang Y, Duan C. Electron transfer in the confined environments of metal-organic coordination supramolecular systems. Chem Soc Rev 2020;49:5561-600.

53. Pan M, Wu K, Zhang J, Su C. Chiral metal–organic cages/containers (MOCs): from structural and stereochemical design to applications. Coordin Chem Rev 2019;378:333-49.

54. Li K, Zhang LY, Yan C, et al. Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal-organic cages via metalloligand strategy for guest trapping and protection. J Am Chem Soc 2014;136:4456-9.

55. Wu K, Li K, Hou YJ, et al. Homochiral D4-symmetric metal-organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules. Nat Commun 2016;7:10487.

56. Guo J, Xu YW, Li K, et al. Regio- and enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage. Angew Chem Int Ed Engl 2017;56:3852-6.

57. Guo J, Fan YZ, Lu YL, Zheng SP, Su CY. Visible-light photocatalysis of asymmetric [2+2] cycloaddition in cage-confined nanospace merging chirality with triplet-state photosensitization. Angew Chem Int Ed Engl 2020;59:8661-9.

58. Yoshizawa M, Tamura M, Fujita M. Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 2006;312:251-4.

59. Nishioka Y, Yamaguchi T, Kawano M, Fujita M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J Am Chem Soc 2008;130:8160-1.

60. Chen J, Wu X, Huang S, et al. Catalytic enantioselective cycloaddition transformation of tricyclic arenes enabled by a dual-role chiral cage-reactor. ACS Catal 2024;14:3733-41.

61. Ruan J, Li Z, Yin C, et al. Enantioselective [2+2] cross-photocycloaddition enabled by a chiral cage reactor via multilevel-selectivity control. ACS Catal 2024;14:7321-31.

62. Xiao JD, Jiang HL. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res 2019;52:356-66.

63. Wang J, Wang C, Lin W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal 2012;2:2630-40.

64. Qiu X, Zhang Y, Zhu Y, et al. Applications of nanomaterials in asymmetric photocatalysis: recent progress, challenges, and opportunities. Adv Mater 2021;33:e2001731.

65. Chen XY, Chen H, Đorđević L, et al. Selective photodimerization in a cyclodextrin metal-organic framework. J Am Chem Soc 2021;143:9129-39.

66. Wu P, He C, Wang J, et al. Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. J Am Chem Soc 2012;134:14991-9.

67. Xia Z, He C, Wang X, Duan C. Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization. Nat Commun 2017;8:361.

68. Zhang Y, Guo J, Shi L, et al. Tunable chiral metal organic frameworks toward visible light-driven asymmetric catalysis. Sci Adv 2017;3:e1701162.

69. Hu YH, Liu CX, Wang JC, Ren XH, Kan X, Dong YB. TiO2@UiO-68-CIL: a metal-organic-framework-based bifunctional composite catalyst for a one-pot sequential asymmetric Morita-Baylis-Hillman reaction. Inorg Chem 2019;58:4722-30.

70. Wang S, Liu W, Wang J, et al. Mechanochemical encapsulation of enzymes into MOFs for photoenzymatic enantioselective catalysis. ACS Mater Lett 2024;6:2609-16.

71. Liu W, Yang Y, Yang X, et al. Template-directed fabrication of highly efficient metal-organic framework photocatalysts. ACS Appl Mater Interfaces 2021;13:58619-29.

72. Kushnarenko A, Zabelina A, Guselnikova O, et al. Merging gold plasmonic nanoparticles and L-proline inside a MOF for plasmon-induced visible light chiral organocatalysis at low temperature. Nanoscale 2024;16:5313-22.

73. Lee JM, Cooper AI. Advances in conjugated microporous polymers. Chem Rev 2020;120:2171-214.

74. Yang L, Wang J, Zhao K, et al. Photoactive covalent organic frameworks for catalyzing organic reactions. Chempluschem 2022;87:e202200281.

75. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev 2012;41:6010-22.

76. Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 2013;42:548-68.

77. He T, Zhao Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew Chem Int Ed Engl 2023;62:e202303086.

78. Kang X, Stephens ER, Spector-Watts BM, et al. Challenges and opportunities for chiral covalent organic frameworks. Chem Sci 2022;13:9811-32.

79. Kang X, Wu X, Han X, Yuan C, Liu Y, Cui Y. Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis. Chem Sci 2019;11:1494-502.

80. Li C, Ma Y, Liu H, et al. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese J Catal 2020;41:1288-97.

81. Zhou Z, Li L, Dai L, Liu H, Li Y, Li P. The synthesis of highly crystalline covalent organic frameworks via the monomer crystal induction for the photocatalytic asymmetric α‐alkylation of aldehydes. J Polym Sci 2024;62:1621-8.

82. Ma HC, Sun YN, Chen GJ, Dong YB. A BINOL-phosphoric acid and metalloporphyrin derived chiral covalent organic framework for enantioselective α-benzylation of aldehydes. Chem Sci 2022;13:1906-11.

83. He T, Liu R, Wang S, et al. Bottom-up design of photoactive chiral covalent organic frameworks for visible-light-driven asymmetric catalysis. J Am Chem Soc 2023;145:18015-21.

84. Kan X, Wang JC, Chen Z, et al. Synthesis of metal-free chiral covalent organic framework for visible-light-mediated enantioselective photooxidation in water. J Am Chem Soc 2022;144:6681-6.

85. Ma HC, Zhao CC, Chen GJ, Dong YB. Photothermal conversion triggered thermal asymmetric catalysis within metal nanoparticles loaded homochiral covalent organic framework. Nat Commun 2019;10:3368.

86. Ma HC, Chen GJ, Huang F, Dong YB. Homochiral covalent organic framework for catalytic asymmetric synthesis of a drug intermediate. J Am Chem Soc 2020;142:12574-8.

87. Jin C, Li N, Lin E, et al. Enzyme immobilization in porphyrinic covalent organic frameworks for photoenzymatic asymmetric catalysis. ACS Catal 2022;12:8259-68.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/