REFERENCES

1. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.

2. Weiss, M.; Ruess, R.; Kasnatscheew, J.; et al. Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy. Mater. 2021, 11, 2101126.

3. Xu, J.; Cai, X.; Cai, S.; et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy. Environ. Maters. 2023, 6, e12450.

4. Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. Engl. 2018, 57, 102-20.

5. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy. Mater. 2020, 10, 2001310.

6. Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 2019, 31, e1808393.

7. Qiao, S.; Zhou, Q.; Ma, M.; Liu, H. K.; Dou, S. X.; Chong, S. Advanced anode materials for rechargeable sodium-ion batteries. ACS. Nano. 2023, 17, 11220-52.

8. Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D. H. C.; Lee, P. S. Optimization strategies toward functional sodium-ion batteries. Energy. Environ. Mater. 2023, 6, e12633.

9. Chen, X.; Yin, X.; Aslam, J.; Sun, W.; Wang, Y. Recent progress and design principles for rechargeable lithium organic batteries. Electrochem. Energy. Rev. 2022, 5, 135.

10. Wu, X.; Feng, X.; Yuan, J.; et al. Thiophene functionalized porphyrin complexes as novel bipolar organic cathodes with high energy density and long cycle life. Energy. Storage. Mater. 2022, 46, 252-8.

11. Yang, G.; Zhu, Y.; Zhao, Q.; et al. Advanced organic electrode materials for aqueous rechargeable batteries. Sci. China. Chem. 2024, 67, 137-64.

12. Zhang, X.; Xing, P.; Madanu, T. L.; Li, J.; Shu, J.; Su, B. L. Aqueous batteries: from laboratory to market. Natl. Sci. Rev. 2023, 10, nwad235.

13. Zhang, H.; Gao, Y.; Liu, X.; et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy. Mater. 2023, 13, 2300149.

14. Yao, H.; Zheng, L.; Xin, S.; Guo, Y. Air-stability of sodium-based layered-oxide cathode materials. Sci. China. Chem. 2022, 65, 1076-87.

15. Ma, Y.; Hu, Y.; Pramudya, Y.; et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2202372.

16. Hao, Z.; Shi, X.; Yang, Z.; et al. The distance between phosphate-based polyanionic compounds and their practical application for sodium-ion batteries. Adv. Mater. 2024, 36, e2305135.

17. Pramanik, A.; Manche, A. G.; Sougrati, M. T.; Chadwick, A. V.; Lightfoot, P.; Armstrong, A. R. K2Fe(C2O4)2: an oxalate cathode for Li/Na-ion batteries exhibiting a combination of multielectron cation and anion redox. Chem. Mater. 2023, 35, 2600-11.

18. Lin, X.; Yang, X.; Chen, H.; et al. In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. J. Energy. Chem. 2023, 76, 146-64.

19. Chen, X.; Liu, C.; Fang, Y.; et al. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon. Energy. 2022, 4, 1133-50.

20. Zhao, L.; Hu, Z.; Lai, W.; et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy. Mater. 2021, 11, 2002704.

21. Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M. M.; Hu, Y. S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655-87.

22. Peng, P.; Wu, Y.; Li, X.; et al. Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare. Met. 2021, 40, 3049-75.

23. Dong, J.; Jiang, Y.; Wang, R.; Wei, Q.; An, Q.; Zhang, X. Review and prospects on the low-voltage Na2Ti3O7 anode materials for sodium-ion batteries. J. Energy. Chem. 2024, 88, 446-60.

24. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; et al. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-613.

25. Lin, X.; Chen, J.; Fan, J.; et al. Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy. Mater. 2019, 9, 1902312.

26. Konkena, B.; Kalapu, C.; Kaur, H.; et al. Cobalt oxide 2D nanosheets formed at a polarized liquid|liquid interface toward high-performance Li-ion and Na-ion battery anodes. ACS. Appl. Mater. Interfaces. 2023, 15, 58320-32.

27. Yang, X. T.; Huang, T. Y.; Wang, Y. H.; et al. Understanding the origin of the improved sodium ion storage performance of the transition metal oxide@carbon nanocomposite anodes. J. Chem. Phys. 2023, 158, 174708.

28. Wu, Y.; Yao, Y.; Wang, L.; Yu, Y. Recent progress on modification strategies of alloy-based anode materials for alkali-ion batteries. Chem. Res. Chin. Univ. 2021, 37, 200-9.

29. Wu, X.; Lan, X.; Hu, R.; Yao, Y.; Yu, Y.; Zhu, M. Tin-based anode materials for stable sodium storage: progress and perspective. Adv. Mater. 2022, 34, e2106895.

30. Tan, M.; Han, S.; Li, Z.; Cui, H.; Lei, D.; Wang, C. Compact Sn/C composite realizes long-life sodium-ion batteries. Nano. Res. 2023, 16, 3804-13.

31. Huang, H.; Xu, R.; Feng, Y.; et al. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, e1904320.

32. Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy. Environ. Sci. 2016, 9, 2978-3006.

33. Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.

34. Zhang, M.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost sodium-ion batteries to commercialization: strategies to enhance initial coulombic efficiency of hard carbon anode. Nano. Energy. 2021, 82, 105738.

35. He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy. Storage. Mater. 2019, 23, 233-51.

36. Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy. Mater. 2020, 10, 2000927.

37. Zhao, R.; Sun, N.; Xu, B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small. Struct. 2021, 2, 2100132.

38. Li, Y.; Wu, F.; Li, Y.; et al. Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 2022, 51, 4484-536.

39. Tian, Z.; Zou, Y.; Liu, G.; et al. Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 2022, 9, e2201207.

40. Cheng, H.; Sun, Q.; Li, L.; et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS. Energy. Lett. 2022, 7, 490-513.

41. Pei, Z.; Meng, Q.; Wei, L.; Fan, J.; Chen, Y.; Zhi, C. Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials. Energy. Storage. Mater. 2020, 28, 55-63.

42. Jin, Q.; Wang, K.; Feng, P.; Zhang, Z.; Cheng, S.; Jiang, K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy. Storage. Mater. 2020, 27, 43-50.

43. Xie, F.; Niu, Y.; Zhang, Q.; et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202116394.

44. Wu, S.; Peng, H.; Xu, J.; et al. Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage. Carbon 2024, 218, 118756.

45. Mehmood, A.; Ali, G.; Koyutürk, B.; Pampel, J.; Chung, K. Y.; Fellinger, T. Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes. Energy. Storage. Mater. 2020, 28, 101-11.

46. Tao, S.; Xu, W.; Zheng, J.; et al. Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon 2021, 178, 233-42.

47. Yan, J.; Li, H.; Wang, K.; et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy. Mater. 2021, 11, 2003911.

48. Fan, M.; Lin, Z.; Zhang, P.; et al. Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy. Mater. 2021, 11, 2003037.

49. Luo, S.; Yuan, T.; Soule, L.; et al. Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv. Funct. Mater. 2020, 30, 1908309.

50. Wang, C.; Zhang, J.; Wang, X.; Lin, C.; Zhao, X. S. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2002629.

51. Lv, D.; Wang, D.; Wang, N.; et al. Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: high volumetric capacity, superior power density and large areal capacity. J. Energy. Chem. 2022, 68, 104-12.

52. Wang, C.; Yao, Q.; Wang, M.; et al. Highly conductive hierarchical TiO2 micro-sheet enables thick electrodes in sodium storage. Adv. Funct. Mater. 2024, 34, 2301996.

53. Guan, S.; Fan, Q.; Shen, Z.; Zhao, Y.; Sun, Y.; Shi, Z. Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A. 2021, 9, 5720-9.

54. Xu, X.; Chen, B.; Hu, J.; et al. Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. 2019, 31, e1904589.

55. Meng, W.; Dang, Z.; Li, D.; Jiang, L.; Fang, D. Interface and defect engineered titanium-base oxide heterostructures synchronizing high-rate and ultrastable sodium storage. Adv. Energy. Mater. 2022, 12, 2201531.

56. Zhao, Q.; Xia, Z.; Qian, T.; et al. PVP-assisted synthesis of ultrafine transition metal oxides encapsulated in nitrogen-doped carbon nanofibers as robust and flexible anodes for sodium-ion batteries. Carbon 2021, 174, 325-34.

57. Hou, T.; Liu, B.; Sun, X.; et al. Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS. Nano. 2021, 15, 6735-46.

58. Chen, Y.; Liu, H.; Guo, X.; et al. Bimetallic sulfide SnS2/FeS2 nanosheets as high-performance anode materials for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 39248-56.

59. Muhammad M, Liu Y, Sheng L, Haruna B, Hu X, Wen Z. Phase engineering of nickel-based sulfides toward robust sodium-ion batteries. J. Colloid. Interface. Sci. 2023, 646, 245-53.

60. Wang, X.; Zhang, X.; Chen, Y.; Dong, J.; Zhao, J. Optimizing electron spin-polarized states of MoSe2/Cr2Se3 heterojunction-embedded carbon nanospheres for superior sodium/potassium-ion battery performances. Small 2024, 20, e2312130.

61. Chen, H.; Tian, P.; Fu, L.; Wan, S.; Liu, Q. Hollow spheres of solid solution Fe7Ni3S11/CN as advanced anode materials for sodium ion batteries. Chem. Eng. J. 2022, 430, 132688.

62. Wang, Z.; Dong, K.; Wang, D.; et al. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem. Eng. J. 2020, 384, 123327.

63. Ma, W.; Wang, J.; Gao, H.; et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy. Storage. Mater. 2018, 13, 247-56.

64. Edison, E.; Sreejith, S.; Ren, H.; Lim, C. T.; Madhavi, S. Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. J. Mater. Chem. A. 2019, 7, 14145-52.

65. Chen, L.; He, X.; Chen, H.; Huang, S.; Wei, M. N-doped carbon encapsulating Bi nanoparticles derived from metal–organic frameworks for high-performance sodium-ion batteries. J. Mater. Chem. A. 2021, 9, 22048-55.

66. Gao, H.; Niu, J.; Zhang, C.; Peng, Z.; Zhang, Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS. Nano. 2018, 12, 3568-77.

67. Ma, W.; Yin, K.; Gao, H.; Niu, J.; Peng, Z.; Zhang, Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano. Energy. 2018, 54, 349-59.

68. Lei, S.; Qiu, M.; Hu, X.; et al. Heteroatomic phosphorus selenides molecules encapsulated in porous carbon as a highly reversible anode for sodium-ion batteries. Mater. Today. Nano. 2023, 22, 100344.

69. Xu, Z.; Wang, J.; Guo, Z.; et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy. Mater. 2022, 12, 2200208.

70. Lu, Y.; Zhao, C.; Qi, X.; et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy. Mater. 2018, 8, 1800108.

71. Zhao, J.; He, X.; Lai, W.; et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy. Mater. 2023, 13, 2300444.

72. Wang, J.; Zhao, J.; He, X.; Qiao, Y.; Li, L.; Chou, S. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustainable. Mater. Technol. 2022, 33, e00446.

73. Meng, Q.; Lu, Y.; Ding, F.; Zhang, Q.; Chen, L.; Hu, Y. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS. Energy. Lett. 2019, 4, 2608-12.

74. Kamiyama, A.; Kubota, K.; Igarashi, D.; et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. Engl. 2021, 60, 5114-20.

75. Li, Y.; Lu, Y.; Meng, Q.; et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy. Mater. 2019, 9, 1902852.

76. Li, Q.; Liu, X.; Tao, Y.; et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 2022, 9, nwac084.

77. Ma, L.; Gao, X.; Zhang, W.; et al. Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano. Energy. 2018, 53, 91-6.

78. Han, M.; Zou, Z.; Liu, J.; et al. Pressure-induced defects and reduced size endow TiO2 with high capacity over 20 000 cycles and excellent fast-charging performance in sodium ion batteries. Small 2024, 20, e2312119.

79. Hwang, J.; Du, H.; Yun, B.; et al. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS. Energy. Lett. 2019, 4, 494-501.

80. Yang, J.; Huang, M.; Xu, L.; Xia, X.; Peng, C. Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage. Chem. Eng. J. 2022, 445, 136638.

81. Lan, K.; Liu, L.; Zhang, J. Y.; et al. Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. 2021, 143, 14097-105.

82. Xia, Q.; Liang, Y.; Lin, Z.; et al. Confining ultrathin 2D superlattices in mesoporous hollow spheres renders ultrafast and high-capacity Na-ion storage. Adv. Energy. Mater. 2020, 10, 2001033.

83. Liu, S.; Niu, K.; Chen, S.; et al. TiO2 bunchy hierarchical structure with effective enhancement in sodium storage behaviors. Carbon. Energy. 2022, 4, 645-53.

84. Yang, D.; Xu, B.; Zhao, Q.; Zhao, X. S. Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-ion batteries. J. Mater. Chem. A. 2019, 7, 363-71.

85. Khan, R.; Yan, W.; Ahmad, W.; et al. Role of moderate strain engineering in Nickel Sulfide anode for advanced sodium-ion batteries. J. Alloys. Compd. 2023, 963, 171196.

86. Li, R.; Dong, W.; Pan, J.; Huang, F. Micrometer-sized, dual-conductive MoO2/β-MoO3-x mosaics for high volumetric capacity Li/Na-ion batteries. Small. Methods. 2021, 5, e2100765.

87. Wang, B.; Li, F.; Wang, X.; Wang, G.; Wang, H.; Bai, J. Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chem. Eng. J. 2019, 364, 57-69.

88. Zhang, K.; Xiong, F.; Zhou, J.; Mai, L.; Zhang, L. Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano. Energy. 2020, 67, 104222.

89. Xu, M.; Xia, Q.; Yue, J.; et al. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1807377.

90. Zhao, Y.; Wang, F.; Wang, C.; et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano. Energy. 2019, 56, 426-33.

91. Cao, L.; Gao, X.; Zhang, B.; Ou, X.; Zhang, J.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS. Nano. 2020, 14, 3610-20.

92. Liu, J.; Li, Y.; Chen, Z.; et al. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 2022, 144, 23191-7.

93. Yang, H.; Chen, L. W.; He, F.; et al. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano. Lett. 2020, 20, 758-67.

94. Fan, X.; Han, J.; Ding, Y.; et al. 3D nanowire arrayed Cu current collector toward homogeneous alloying anode deposition for enhanced sodium storage. Adv. Energy. Mater. 2019, 9, 1900673.

95. Dang, J.; Zhu, R.; Zhang, S.; et al. Bean pod-like SbSn/N-doped carbon fibers toward a binder free, free-standing, and high-performance anode for sodium-ion batteries. Small 2022, 18, e2107869.

96. Song, Z.; Wang, G.; Chen, Y.; Lu, Y.; Wen, Z. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries. Chem. Eng. J. 2023, 463, 142289.

97. Kim, Y. H.; An, J. H.; Kim, S. Y.; et al. Enabling 100C fast-charging bulk Bi anodes for Na-ion batteries. Adv. Mater. 2022, 34, e2201446.

98. Eaves-Rathert, J.; Moyer-Vanderburgh, K.; Wolfe, K.; Zohair, M.; Pint, C. L. Leveraging impurities in recycled lead anodes for sodium-ion batteries. Energy. Storage. Mater. 2022, 53, 552-8.

99. Fang, H.; Gao, S.; Ren, M.; et al. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries. Angew. Chem. Int. Ed. Engl. 2023, 62, e202214717.

100. Bai, P.; Han, X.; He, Y.; et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy. Storage. Mater. 2020, 25, 324-33.

101. Jin, Y.; Xu, Y.; Xiao, B.; et al. Stabilizing interfacial reactions for stable cycling of high-voltage sodium batteries. Adv. Funct. Mater. 2022, 32, 2204995.

102. Jin, Y.; Xu, Y.; Le, P. M. L.; et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS. Energy. Lett. 2020, 5, 3212-20.

103. Li, K.; Zhang, J.; Lin, D.; et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725.

104. Meng, W.; Dang, Z.; Li, D.; Jiang, L. Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism. Adv. Mater. 2023, 35, e2301376.

105. Xu, Z.; Lim, K.; Park, K.; Yoon, G.; Seong, W. M.; Kang, K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.

106. Cha, G.; Mohajernia, S.; Nguyen, N. T.; et al. Li+ pre-insertion leads to formation of solid electrolyte interface on TiO2 nanotubes that enables high-performance anodes for sodium ion batteries. Adv. Energy. Mater. 2020, 10, 1903448.

107. Li, Q.; Cao, Z.; Cheng, H.; et al. Electrolyte boosting microdumbbell-structured alloy/metal oxide anode for fast-charging sodium-ion batteries. ACS. Mater. Lett. 2022, 4, 2469-79.

108. Yang, J.; Guo, X.; Gao, H.; et al. A high-performance alloy-based anode enabled by surface and interface engineering for wide-temperature sodium-ion batteries. Adv. Energy. Mater. 2023, 13, 2300351.

109. Chu, C.; Zhou, L.; Cheng, Y.; et al. Ultralow-concentration (0.1M) electrolyte for stable bulk alloy (Sn, Bi) anode in sodium-ion battery via regulating anions structure. Chem. Eng. J. 2024, 482, 148915.

110. Huang, J.; Guo, X.; Du, X.; et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy. Environ. Sci. 2019, 12, 1550-7.

111. Wu, X.; Li, Z.; Feng, W.; et al. Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging Bi-based anode for sodium-ion batteries. Energy. Storage. Mater. 2024, 66, 103219.

112. Zhao, B.; Han, J.; Liu, B.; Zhang, S. L.; Guan, B. Hierarchical metal–organic framework nanoarchitectures for catalysis. Chem. Synth. 2024, 4, 41.

113. Peng, Y.; Tan, Q.; Huang, H.; et al. Customization of functional MOFs by a modular design strategy for target applications. Chem. Synth. 2022, 2, 15.

114. Li, H.; Li, C.; Wang, Y.; et al. Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries. Chem. Synth. 2022, 2, 8.

115. Su, Y.; Yuan, G.; Hu, J.; et al. Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions. Chem. Synth. 2022, 3, 1.

116. Wang, R.; Zhao, J.; Fang, Q.; Qiu, S. Advancements and applications of three-dimensional covalent organic frameworks. Chem. Synth. 2024, 4, 29.

117. Li, X.; Geng, K.; Fu, S.; Jin, E. Molecular engineering toward large pore-sized covalent organic frameworks. Chem. Synth. 2024, 4, 15.

118. Yin, X.; Sarkar, S.; Shi, S.; et al. Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

119. Lee, J.; Kim, Y.; Park, S.; et al. Sodium-coordinated polymeric phthalocyanines as stable high-capacity organic anodes for sodium-ion batteries. Energy. Environ. Mater. 2023, 6, e12468.

120. Liu, Y.; Yao, Z.; Vanaphuti, P.; et al. Stable fast-charging sodium-ion batteries achieved by a carbomethoxy-modified disodium organic material. Cell. Rep. Phys. Sci. 2023, 4, 101240.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/