REFERENCES

1. Chen, X.; Zhao, J.; Li, G.; Zhang, D.; Li, H. Recent advances in photocatalytic renewable energy production. Energy. Mater. 2022, 2, 200001.

2. Ning, J.; Zhang, B.; Siqin, L.; et al. Designing advanced S-scheme CdS QDs/La-Bi2WO6 photocatalysts for efficient degradation of RhB. Exploration 2023, 3, 20230050.

3. Cao, W.; Zhang, W.; Dong, L.; et al. Progress on quantum dot photocatalysts for biomass valorization. Exploration 2023, 3, 20220169.

4. Rhimi, B.; Zhou, M.; Yan, Z.; Cai, X.; Jiang, Z. Cu-based materials for enhanced C2+ product selectivity in photo-/electro-catalytic CO2 reduction: challenges and prospects. Nanomicro. Lett. 2024, 16, 64.

5. He, K.; Huang, Z.; Chen, C.; Qiu, C.; Zhong, Y. L.; Zhang, Q. Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nanomicro. Lett. 2023, 16, 23.

6. Dhakshinamoorthy, A.; Li, Z.; Yang, S.; Garcia, H. Metal-organic framework heterojunctions for photocatalysis. Chem. Soc. Rev. 2024, 53, 3002-35.

7. Dubey, A.; Sanchez, S. L.; Yang, J.; Ahmadi, M. Lead-free halide perovskites for photocatalysis via high-throughput exploration. Chem. Mater. 2024, 36, 2165-76.

8. Yang, J. L.; Wang, H. J.; Qi, X.; et al. Understanding the behaviors of plasmon-induced hot carriers and their applications in photocatalysis. ACS. Appl. Mater. Interfaces. 2024, 16, 12149-60.

9. Liu, H.; Yan, N.; Bai, H.; Kwok, R. T. K.; Tang, B. Z. Aggregation-induced emission luminogens for augmented photosynthesis. Exploration 2022, 2, 20210053.

10. Sun, Z.; Zhao, H.; Yu, X.; Hu, J.; Chen, Z. Glucose photorefinery for sustainable hydrogen and value-added chemicals coproduction. Chem. Synth. 2024, 4, 4.

11. Li, Y.; Zhang, D.; Qiao, W.; et al. Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals. Chem. Synth. 2022, 2, 9.

12. Zhang, Y.; Liu, Y.; Gong, X.; et al. Construction of piezoelectric photocatalyst Au/BiVO4 for efficient degradation of tetracycline and studied at single-particle level. Chem. Synth. 2024, 4, 21.

13. Wang, W.; Wang, X.; Gao, M.; Li, Z.; Zhou, W. Microenvironmental regulation of covalent organic frameworks for photocatalytic hydrogen peroxide production. Coord. Chem. Rev. 2024, 506, 215694.

14. Gao, Z.; Ren, P.; Sun, L.; Luo, N.; Wang, F. Photocatalysts for steering charge transfer and radical reactions in biorefineries. Nat. Synth. 2024, 3, 438-51.

15. Xue, J.; Fujitsuka, M.; Tachikawa, T.; Bao, J.; Majima, T. Charge trapping in semiconductor photocatalysts: a time- and space-domain perspective. J. Am. Chem. Soc. 2024, 146, 8787-99.

16. Li, R.; Qiu, L. P.; Cao, S. Z.; et al. Research advances in magnetic field-assisted photocatalysis. Adv. Funct. Mater. 2024, 34, 2316725.

17. Sajwan, D.; Sharma, A.; Sharma, M.; Krishnan, V. Upcycling of plastic waste using photo-, electro-, and photoelectrocatalytic approaches: a way toward circular economy. ACS. Catal. 2024, 14, 4865-926.

18. Wang, P.; Yang, F.; Qu, J.; et al. Recent advances and challenges in efficient selective photocatalytic CO2 methanation. Small 2024, 20, e2400700.

19. Jing, L.; Xu, Y.; Xie, M.; et al. Piezo-photocatalysts in the field of energy and environment: designs, applications, and prospects. Nano. Energy. 2023, 112, 108508.

20. Zhao, H.; Liu, J.; Zhong, N.; et al. Biomass photoreforming for hydrogen and value-added chemicals co-production on hierarchically porous photocatalysts. Adv. Energy. Mater. 2023, 13, 2300257.

21. Jing, L.; Xu, Y.; Xie, M.; et al. Cyano-rich g-C3N4 in photochemistry: design, applications, and prospects. Small 2024, 20, e2304404.

22. Jing, L.; Xu, Y.; Xie, M.; et al. LnVO4 (Ln=La, Ce, Pr, Nd, etc.)-based photocatalysts: synthesis, design, and applications. J. Mater. Sci. Technol. 2024, 177, 10-43.

23. Loh, J. Y. Y.; Wang, A.; Mohan, A.; et al. Leave no photon behind: artificial intelligence in multiscale physics of photocatalyst and photoreactor design. Adv. Sci. 2024, 11, e2306604.

24. Qin, L.; Ma, C.; Zhang, J.; Zhou, T. Structural motifs in covalent organic frameworks for photocatalysis. Adv. Funct. Mater. 2024, 2401562.

25. Li, S.; Li, Y.; Huang, H. Solar-driven selective oxidation over bismuth-based semiconductors: from prolific catalysts to diverse reactions. Adv. Funct. Mater. 2024, 34, 2313883.

26. Deng, C.; Wang, T.; Wu, P.; Zhu, W.; Dai, S. High entropy materials for catalysis: a critical review of fundamental concepts and applications. Nano. Energy. 2024, 120, 109153.

27. Zhang, J.; Yu, Q.; Wang, Q.; et al. Strong yet ductile high entropy alloy derived nanostructured cermet. Nano. Lett. 2022, 22, 7370-7.

28. Zoubi W, Putri RAK, Abukhadra MR, Ko YG. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano. Energy. 2023, 110, 108362.

29. Sun, L.; Wang, W.; Lu, P.; Liu, Q.; Wang, L.; Tang, H. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys. Chinese. J. Catal. 2023, 51, 90-100.

30. Amiri, A.; Shahbazian-yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A. 2021, 9, 782-823.

31. Shi, Z.; Wang, L.; Huang, Y.; Kong, X. Y.; Ye, L. High-entropy catalysts: new opportunities toward excellent catalytic activities. Mater. Chem. Front. 2023, 8, 179-91.

32. Xin, Y.; Li, S.; Qian, Y.; et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS. Catal. 2020, 10, 11280-306.

33. Li, H.; Zhu, H.; Zhang, S.; Zhang, N.; Du, M.; Chai, Y. Nano high-entropy materials: synthesis strategies and catalytic applications. Small. Struct. 2020, 1, 2000033.

34. Shaikh, J. S.; Rittiruam, M.; Saelee, T.; et al. High entropy materials frontier and theoretical insights for logistics CO2 reduction and hydrogenation: electrocatalysis, photocatalysis and thermo-catalysis. J. Alloys. Compd. 2023, 969, 172232.

35. Gao, Y.; Liu, Y.; Yu, H.; Zou, D. High-entropy oxides for catalysis: status and perspectives. Appl. Catal. A. Gen. 2022, 631, 118478.

36. Ma, J.; Huang, C. High entropy energy storage materials: synthesis and application. J. Energy. Storage. 2023, 66, 107419.

37. Wu, F.; Dou, Y.; Zhou, J.; et al. High-entropy (FeCoNiCuZn)WO4 photocatalysts-based fibrous membrane for efficient capturing and upcycling of plastic. Chem. Eng. J. 2023, 470, 144134.

38. Shi, Z.; Li, C.; Huang, N.; et al. Highly selective formation of CO from domestic wastewater with Zero CO2 emissions through solar energy catalysis. Appl. Catal. B. Environ. 2024, 343, 123542.

39. Edalati, P.; Shen, X.; Watanabe, M.; et al. High-entropy oxynitride as a low-bandgap and stable photocatalyst for hydrogen production. J. Mater. Chem. A. 2021, 9, 15076-86.

40. Zoubi W, Assfour B, Wahab Allaf A, Leoni S, Kang J, Ko YG. Experimental and theoretical investigation of high-entropy-alloy/support as a catalyst for reduction reactions. J. Energy. Chem. 2023, 81, 132-42.

41. Badreldin, A.; Bouhali, O.; Abdel-wahab, A. Complimentary computational cues for water electrocatalysis: a DFT and ML perspective. Adv. Funct. Mater. 2024, 34, 2312425.

42. Zhai, Y.; Ren, X.; Wang, B.; Liu, S. High-entropy catalyst - A novel platform for electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2207536.

43. Araujo, R. B.; Edvinsson, T. Supervised AI and deep neural networks to evaluate high-entropy alloys as reduction catalysts in aqueous environments. ACS. Catal. 2024, 14, 3742-55.

44. Hart, G. L. W.; Mueller, T.; Toher, C.; Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 2021, 6, 730-55.

45. Katiyar, N. K.; Goel, G.; Goel, S. Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent. Mater. 2021, 4, 1635-48.

46. Lu, Z.; Chen, Z. W.; Singh, C. V. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 2020, 3, 1318-33.

47. Yang, Z.; Gao, W. Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 2022, 9, e2106043.

48. Cao, L. Recent advances in the application of machine-learning algorithms to predict adsorption energies. Trends. Chem. 2022, 4, 347-60.

49. Aslan, E.; Emir, Ö.; Arslan, F.; et al. Improving the optical properties of CuCoMnOx spinel absorber using ZnO nanorod arrays for thermal collector and photocatalytic applications. Ceram. Int. 2024, 50, 9169-76.

50. Gautam, A.; Das, S.; Ahmad, M. I. Band gap engineering through calcium addition in (Mg, Co, Ni, Cu, Zn)O high entropy oxide for efficient photocatalysis. Surf. Interfaces. 2024, 46, 104054.

51. Zhang, Y.; Li, S.; Wang, N.; et al. Flexible amorphous (Fe0.5Co0.5)70B21Ta4Ti5 high-entropy alloy catalyst showing high activity and stability in degrading Eosin Y. Appl. Surf. Sci. 2023, 616, 156567.

52. Yu, Y.; Liu, S.; Wang, H.; et al. Design, synthesis and photocatalytic performance of A32Ti8Sn8Nb4Ta4Me8O96 (A=Ba, Sr; Me=Fe, Ga) perovskite structure high entropy oxides. J. Solid. State. Chem. 2023, 317, 123694.

53. Pang, Z.; Wang, B.; Yan, X.; et al. Unique Sillén-structured multimetal high entropy oxyhalide PbxCd1-xBiO2Br with enhanced photocatalytic activity. Appl. Surf. Sci. 2022, 578, 151921.

54. Gul, A.; Ullah, R.; Sun, J.; Munir, T.; Bai, S. Synthesis of mesoporous TiO2/BMMs via hydrothermal method and its potential application toward adsorption and photocatalytic degradation of crystal violet from aqueous solution. Arab. J. Chem. 2022, 15, 103530.

55. Du, M.; Liu, S.; Ge, Y.; et al. Preparation and effect of grain size on the thermal stability, phase transition, mechanical property, and photocatalytic property of pyrochlore (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 high-entropy oxide. Ceram. Int. 2022, 48, 20667-74.

56. Liu, S.; Du, M.; Ge, Y.; et al. Enhancement of high entropy oxide (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 mechanical and photocatalytic properties via Eu doping. J. Mater. Sci. 2022, 57, 7863-76.

57. Wang, T.; Wang, Y.; Wang, N.; Xu, S.; Han, Z.; Wang, Y. Development of a novel (Ni40Fe30Co20Al10)90Ti10 high-entropy alloy with excellent photocatalytic performance. Mater. Lett. 2021, 283, 128817.

58. Fu, H.; Li, S.; Lin, Y.; et al. Enhancement of piezo–photocatalytic activity in perovskite (Bi0.2Na0.2Ba0.2K0.2La0.2)TiO3 oxides via high entropy induced lattice distortion and energy band reconfiguration. Ceram. Int. 2024, 50, 9159-68.

59. Jia, D.; Chigan, T.; Li, X.; Li, H.; Yang, P. Photocatalytic degradation performance for high-entropy oxide (La0.2Ce0.2Gd0.2Zr0.2Fex)O2 enriched with defects. J. Alloys. Compd. 2024, 982, 173808.

60. Das, S.; Sanjay, M.; Singh, G. A. R.; Behera, R.; Tiwary, C. S.; Chowdhury, S. Low bandgap high entropy alloy for visible light-assisted photocatalytic degradation of pharmaceutically active compounds: performance assessment and mechanistic insights. J. Environ. Manage. 2023, 342, 118081.

61. Das, S.; Sanjay, M.; Kumar, S.; Sarkar, S.; Tiwary, C. S.; Chowdhury, S. Magnetically separable MnFeCoNiCu-based high entropy alloy nanoparticles for photocatalytic oxidation of antibiotic cocktails in different aqueous matrices. Chem. Eng. J. 2023, 476, 146719.

62. He, L.; Zhou, J.; Sun, Y.; Liu, D.; Liu, X. Efficient removal of tetracycline hydrochloride by high entropy oxides in visible photo-Fenton catalytic process. Environ. Technol. 2023, 1-14.

63. Chang, S. C.; Chen, H.; Chen, P.; Lee, J.; Wu, J. M. Piezo-photocatalysts based on a ferroelectric high-entropy oxide. Appl. Catal. B. Environ. 2023, 324, 122204.

64. Yu, X.; Wang, S.; Zhang, Y.; et al. Novel high entropy alloy/NiAl2O4 photocatalysts for the degradation of tetracycline hydrochloride: Heterojunction construction, performance evaluation and mechanistic insights. Ceram. Int. 2024, 50, 29528-46.

65. Zakir, O.; Guler, O.; Idouhli, R.; et al. Enhanced photocatalytic abilities of innovative NbTaZrMoW high-entropy alloys (HEAs): a comparative analysis with its high entropy oxide (HEO) counterpart. J. Mater. Sci. 2024, 59, 12050-64.

66. Das, S.; Kumar, S.; Sarkar, S.; Pradhan, D.; Tiwary, C. S.; Chowdhury, S. High entropy spinel oxide nanoparticles for visible light-assisted photocatalytic degradation of binary mixture of antibiotic pollutants in different water matrixes. J. Mater. Chem. A. 2024, 12, 16815-30.

67. Wen, N.; Mu, X.; Zhu, Y.; et al. Preparation of novel layered high entropy bismuth-based materials and their photocatalytic degradation mechanism. Langmuir 2024, 40, 9020-7.

68. Jiang, X.; Liu, L.; Liu, Y.; Wang, Y.; Hou, Z. Molten salt synthesis of A-site disordered niobate microcrystals with tetragonal tungsten bronze structure. J. Cryst. Growth. 2024, 627, 127493.

69. Zhang, F.; Zhou, W.; Zhang, Y.; et al. Spectroscopic analyses and photocatalytic properties of transition group metal oxide films with different entropy values. Mat. Sci. Semicon. Proc. 2024, 169, 107928.

70. Nundy, S.; Tatar, D.; Kojčinović, J.; et al. Bandgap engineering in novel fluorite-type rare earth high-entropy oxides (RE-HEOs) with computational and experimental validation for photocatalytic water splitting applications. Adv. Sustain. Syst. 2022, 6, 2200067.

71. Wu, P. Y.; Le, K. T.; Lin, H. Y.; Chen, Y. C.; Wu, P. H.; Wu, J. M. Flexoelectric catalysts based on hierarchical wrinkling surface of centrosymmetric high-entropy oxide. ACS. Nano. 2023, 17, 17417-26.

72. Zhong, Z.; Fu, H.; Wang, S.; et al. A universal synthesis strategy for lanthanide sulfide nanocrystals with efficient photocatalytic hydrogen production. Small 2023, 19, e2301392.

73. Guo, H.; Wang, G.; Li, H.; Xia, C.; Dong, B.; Cao, L. Direct Z-scheme high-entropy metal phosphides/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen evolution. Colloid. Surface. A. 2023, 674, 131915.

74. Cai, L.; Yan, B.; Shi, H.; Liu, P.; Yang, G. A Medium-entropy oxide as a promising cocatalyst to promote photocatalytic hydrogen evolution. J. Colloid. Interface. Sci. 2023, 646, 625-32.

75. Edalati, P.; Wang, Q.; Razavi-khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. Photocatalytic hydrogen evolution on a high-entropy oxide. J. Mater. Chem. A. 2020, 8, 3814-21.

76. Qi, S.; Zhu, K.; Xu, T.; et al. Water-stable high-entropy metal-organic framework nanosheets for photocatalytic hydrogen production. Adv. Mater. 2024, 36, e2403328.

77. Edalati, P.; Itagoe, Y.; Ishihara, H.; et al. Visible-light photocatalytic oxygen production on a high-entropy oxide by multiple-heterojunction introduction. J. Photoch. Photobio. A. 2022, 433, 114167.

78. Akrami, S.; Murakami, Y.; Watanabe, M.; et al. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B. Environ. 2022, 303, 120896.

79. Ling, H.; Sun, M.; Han, H.; et al. High-entropy lithium niobate nanocubes for photocatalytic water splitting under visible light. J. Phys. Chem. Lett. 2024, 15, 5103-11.

80. Güler, Ö.; Boyrazlı, M.; Albayrak, M. G.; Güler, S. H.; Ishihara, T.; Edalati, K. Photocatalytic hydrogen evolution of TiZrNbHfTaOx high-entropy oxide synthesized by mechano-thermal method. Materials 2024, 17, 853.

81. Pourmand, T. Z.; Fromme, T.; Reichenberger, S.; et al. Laser fragmentation of a high-entropy oxide for enhanced photocatalytic carbon dioxide (CO2) conversion and hydrogen (H2) production. Adv. Powder. Technol. 2024, 35, 104448.

82. Zhang, Y.; Jiang, Z.; Zhang, R.; Wang, K.; Wang, X. Cu-(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 heterojunction derived from high entropy oxide precursor and its photocatalytic activity for CO2 reduction with water vapor. Appl. Surf. Sci. 2024, 651, 159226.

83. Li, W.; Sun, Y.; Ye, L.; et al. Preparation of high entropy nitride ceramic nanofibers from liquid precursor for CO2 photocatalytic reduction. J. Am. Ceram. Soc. 2022, 105, 3729-34.

84. Zhang, L.; Xia, S.; Zhang, X.; et al. Low-temperature synthesis of mesoporous half-metallic high-entropy spinel oxide nanofibers for photocatalytic CO2 reduction. ACS. Nano. 2024, 18, 5322-34.

85. Akrami, S.; Edalati, P.; Shundo, Y.; et al. Significant CO2 photoreduction on a high-entropy oxynitride. Chem. Eng. J. 2022, 449, 137800.

86. Jiang, Z.; Zhang, R.; Zhao, H.; et al. Preparation of (Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 high-entropy oxide with narrow bandgap for photocatalytic CO2 reduction with water vapor. Appl. Surf. Sci. 2023, 612, 155809.

87. Wang, M.; Li, L.; Li, Y.; et al. Entropy engineering of La-based perovskite for simultaneous photocatalytic CO2 reduction and biomass oxidation. Chem. Commun. 2023, 59, 14673-6.

88. Tatar, D.; Ullah, H.; Yadav, M.; et al. High-entropy oxides: a new frontier in photocatalytic CO2 hydrogenation. ACS. Appl. Mater. Interfaces. 2024, 16, 29946-62.

89. Huang, H.; Zhao, J.; Guo, H.; et al. Noble-metal-free high-entropy alloy nanoparticles for efficient solar-driven photocatalytic CO2 reduction. Adv. Mater. 2024, 36, e2313209.

90. Xu, Y.; Wang, L.; Shi, Z.; et al. Peroxide-mediated selective conversion of biomass polysaccharides over high entropy sulfides via solar energy catalysis. Energy. Environ. Sci. 2023, 16, 1531-9.

91. Li, M.; Mei, S.; Zheng, Y.; Wang, L.; Ye, L. High-entropy oxides as photocatalysts for organic conversion. Chem. Commun. 2023, 59, 13478-81.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/