REFERENCES

1. Ishaq H, Dincer I, Crawford C. A review on hydrogen production and utilization: challenges and opportunities. Int J Hydrogen Energ 2022;47:26238-64.

2. Megía PJ, Vizcaíno AJ, Calles JA, Carrero A. Hydrogen production technologies: from fossil fuels toward renewable sources. a mini review. Energy Fuels 2021;35:16403-15.

3. Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sust Energ Rev 2017;67:597-611.

4. Massarweh O, Al-khuzaei M, Al-shafi M, Bicer Y, Abushaikha AS. Blue hydrogen production from natural gas reservoirs: a review of application and feasibility. J CO2 Util 2023;70:102438.

5. Wismann ST, Engbæk JS, Vendelbo SB, et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 2019;364:756-9.

6. Spath PL, Mann MK. Life cycle assessment of hydrogen production via natural gas steam reforming. Available from: https://www.nrel.gov/docs/fy01osti/27637.pdf. [Last accessed on 26 Aug 2024].

7. Kumar A, Baldea M, Edgar TF. A physics-based model for industrial steam-methane reformer optimization with non-uniform temperature field. Comput Chem Eng 2017;105:224-36.

8. Wismann ST, Engbæk JS, Vendelbo SB, et al. Electrified methane reforming: elucidating transient phenomena. Chem Eng J 2021;425:131509.

9. Ambrosetti M, Beretta A, Groppi G, Tronconi E. A numerical investigation of electrically-heated methane steam reforming over structured catalysts. Front Chem Eng 2021;3:747636.

10. Alves L, Pereira V, Lagarteira T, Mendes A. Catalytic methane decomposition to boost the energy transition: scientific and technological advancements. Renew Sust Energ Rev 2021;137:110465.

11. Fan Z, Weng W, Zhou J, Gu D, Xiao W. Catalytic decomposition of methane to produce hydrogen: a review. J Energy Chem 2021;58:415-30.

12. Schneider S, Bajohr S, Graf F, Kolb T. State of the art of hydrogen production via pyrolysis of natural gas. Chem Ing Tech 2020;92:1023-32.

13. Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energ 2015;40:11094-111.

14. Tong S, Miao B, Chan SH. A numerical study on turquoise hydrogen production by catalytic decomposition of methane. Chem Eng Process 2023;186:109323.

15. Hermesmann M, Müller T. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Prog Energ Combust 2022;90:100996.

16. Gautier M, Rohani V, Fulcheri L, Trelles JP. Influence of temperature and pressure on carbon black size distribution during allothermal cracking of methane. Aerosol Sci Tech 2016;50:26-40.

17. Lebarbier VM, Dagle RA, Kovarik L, et al. Sorption-enhanced synthetic natural gas (SNG) production from syngas: a novel process combining CO methanation, water-gas shift, and CO2 capture. Appl Catal B Environ 2014;144:223-32.

18. Jensen IG, Skovsgaard L. The impact of CO2-costs on biogas usage. Energy 2017;134:289-300.

19. Abbas HF, Wan Daud W. Hydrogen production by methane decomposition: a review. Int J Hydrogen Energ 2010;35:1160-90.

20. Wang G, Jin Y, Liu G, Li Y. Production of hydrogen and nanocarbon from catalytic decomposition of methane over a Ni-Fe/Al2O3 catalyst. Energy Fuels 2013;27:4448-56.

21. Torres D, de Llobet S, Pinilla J, Lázaro M, Suelves I, Moliner R. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. J Nat Gas Chem 2012;21:367-73.

22. Kreuger T, van Swaaij W, Kersten S. Methane pyrolysis over porous particles. Catal Today 2023;420:114058.

23. Luo H, Qiao Y, Ning Z, Bo C, Hu J. Effect of thermal extraction on coal-based activated carbon for methane decomposition to hydrogen. ACS Omega 2020;5:2465-72.

24. Ashik U, Wan Daud W, Abbas HF. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - a review. Renew Sust Energ Rev 2015;44:221-56.

25. Zhang J, Li X, Chen H, et al. Hydrogen production by catalytic methane decomposition: carbon materials as catalysts or catalyst supports. Int J Hydrogen Energ 2017;42:19755-75.

26. Li Y, Li D, Wang G. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: a review. Catal Today 2011;162:1-48.

27. Gulino G, Vieira R, Amadou J, et al. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition. Appl Catal A Gen 2005;279:89-97.

28. Pinilla J, Suelves I, Lázaro M, Moliner R. Influence on hydrogen production of the minor components of natural gas during its decomposition using carbonaceous catalysts. J Power Sources 2009;192:100-6.

29. Fidalgo B, Muradov N, Menéndez J. Effect of H2S on carbon-catalyzed methane decomposition and CO2 reforming reactions. Int J Hydrogen Energ 2012;37:14187-94.

30. Lucia O, Maussion P, Dede EJ, Burdio JM. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans Ind Electron 2014;61:2509-20.

31. Kuhwald C, Türkhan S, Kirschning A. Inductive heating and flow chemistry - a perfect synergy of emerging enabling technologies. Beilstein J Org Chem 2022;18:688-706.

32. Chatterjee S, Houlding TK, Doluda VY, Molchanov VP, Matveeva VG, Rebrov EV. Thermal behavior of a catalytic packed-bed milli-reactor operated under radio frequency heating. Ind Eng Chem Res 2017;56:13273-80.

33. Faure S, Kale SS, Mille N, et al. Improving energy efficiency of magnetic CO2 methanation by modifying coil design, heating agents, and by using eddy currents as the complementary heating source. J Appl Phys 2021;129:044901.

34. Whajah B, da Silva Moura N, Blanchard J, et al. Catalytic depolymerization of waste polyolefins by induction heating: selective alkane/alkene production. Ind Eng Chem Res 2021;60:15141-50.

35. Piner R, Li H, Kong X, et al. Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 2013;7:7495-9.

36. Ramirez A, Hueso JL, Abian M, Alzueta MU, Mallada R, Santamaria J. Escaping undesired gas-phase chemistry: microwave-driven selectivity enhancement in heterogeneous catalytic reactors. Sci Adv 2019;5:eaau9000.

37. Marbaix J, Mille N, Lacroix L, et al. Tuning the composition of FeCo nanoparticle heating agents for magnetically induced catalysis. ACS Appl Nano Mater 2020;3:3767-78.

38. Kreissl H, Jin J, Lin SH, et al. Commercial Cu2Cr2O5 decorated with iron carbide nanoparticles as a multifunctional catalyst for magnetically induced continuous-flow hydrogenation of aromatic ketones. Angew Chem Int Ed Engl 2021;60:26639-46.

39. Cerezo-Navarrete C, Marin IM, García-Miquel H, Corma A, Chaudret B, Martínez-Prieto LM. Magnetically induced catalytic reduction of biomass-derived oxygenated compounds in water. ACS Catal 2022;12:8462-75.

40. Mustieles Marin I, De Masi D, Lacroix L, et al. Hydrodeoxygenation and hydrogenolysis of biomass-based materials using FeNi catalysts and magnetic induction. Green Chem 2021;23:2025-36.

41. Truong-phuoc L, Duong-viet C, Tuci G, et al. Graphite felt-sandwiched Ni/SiC catalysts for the induction versus joule-heated sabatier reaction: assessing the catalyst temperature at the nanoscale. ACS Sustain Chem Eng 2022;10:622-32.

42. Niether C, Faure S, Bordet A, et al. Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat Energy 2018;3:476-83.

43. Lin S, Hetaba W, Chaudret B, Leitner W, Bordet A. Copper-decorated iron carbide nanoparticles heated by magnetic induction as adaptive multifunctional catalysts for the selective hydrodeoxygenation of aldehydes (Adv. Energy Mater. 42/2022). Adv Energy Mater 2022;12:2270173.

44. Vinum MG, Almind MR, Engbæk JS, et al. Dual-function cobalt–nickel nanoparticles tailored for high-temperature induction-heated steam methane reforming. Angew Chem 2018;130:10729-33.

45. Mortensen PM, Engbæk JS, Vendelbo SB, Hansen MF, Østberg M. Direct hysteresis heating of catalytically active Ni–Co nanoparticles as steam reforming catalyst. Ind Eng Chem Res 2017;56:14006-13.

46. Nguyen HM, Phan CM, Liu S, Pham-huu C, Nguyen-dinh L. Radio-frequency induction heating powered low-temperature catalytic CO2 conversion via bi-reforming of methane. Chem Eng J 2022;430:132934.

47. Truong-huu T, Duong-viet C, Duong-the H, et al. Radiofrequency-driven selective oxidation of H2S on hierarchical metal-free catalyst containing defects. Appl Catal A Gen 2021;620:118171.

48. Wang W, Duong-viet C, Truong-phuoc L, Nhut J, Vidal L, Pham-huu C. Activated carbon supported nickel catalyst for selective CO2 hydrogenation to synthetic methane under contactless induction heating. Catal Today 2023;418:114073.

49. Ramirez A, Hueso JL, Mallada R, Santamaria J. Microwave-activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane. Chem Eng J 2020;393:124746.

50. Fulcheri L, Rohani V, Wyse E, Hardman N, Dames E. An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen. Int J Hydrogen Energ 2023;48:2920-8.

51. Wang W, Tuci G, Duong-viet C, et al. Induction heating: an enabling technology for the heat management in catalytic processes. ACS Catal 2019;9:7921-35.

52. Bursavich J, Abu-laban M, Muley PD, Boldor D, Hayes DJ. Thermal performance and surface analysis of steel-supported platinum nanoparticles designed for bio-oil catalytic upconversion during radio frequency-based inductive heating. Energ Convers Manage 2019;183:689-97.

53. Wang W, Duong-Viet C, Tuci G, et al. Highly nickel-loaded γ-alumina composites for a radiofrequency-heated, low-temperature CO2 methanation scheme. ChemSusChem 2020;13:5468-79.

54. Schiffer ZJ, Manthiram K. Electrification and decarbonization of the chemical industry. Joule 2017;1:10-4.

55. Francke L, Benquet C, Dath JP, Truong-Phuoc L, Pham-Huu C, Nhut JM. 1. WO2023073000 - Process for the production of hydrogen and carbon by catalytic non-oxidative decomposition of hydrocarbons. Available from: https://patentscope.wipo.int/search/zh/detail.jsf?docId=WO2023073000&recNum=1&maxRec=1&office=&prevFilter=&sortOption=&queryString=&tab=PCT+Biblio. [Last accessed on 26 Aug 2024]

56. Wang W, Duong-viet C, Truong-phuoc L, et al. Improving catalytic performance via induction heating: selective oxidation of H2S on a nitrogen-doped carbon catalyst as a model reaction. New J Chem 2023;47:1105-16.

57. Wehinger GD. Improving the radial heat transport and heat distribution in catalytic gas-solid reactors. Chem Eng Process 2022;177:108996.

58. Duong-viet C, Truong-phuoc L, Nguyen-dinh L, et al. Magnetic induction assisted pyrolysis of plastic waste to liquid hydrocarbons on carbon catalyst. Mater Today Catal 2023;3:100028.

59. Mantiply ED, Pohl KR, Poppel SW, Murphy JA. Summary of measured radiofrequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment. Bioelectromagnetics 1997;18:563-77.

60. Al-hassani AA, Abbas HF, Wan Daud W. Hydrogen production via decomposition of methane over activated carbons as catalysts: full factorial design. Int J Hydrogen Energ 2014;39:7004-14.

61. Pinilla J, Suelves I, Lázaro M, Moliner R. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chem Eng J 2008;138:301-6.

62. Nishii H, Miyamoto D, Umeda Y, et al. Catalytic activity of several carbons with different structures for methane decomposition and by-produced carbons. Appl Surf Sci 2019;473:291-7.

63. Ba H, Tuci G, Evangelisti C, et al. Second youth of a metal-free dehydrogenation catalyst: when γ-Al2O3 meets coke under oxygen- and steam-free conditions. ACS Catal 2019;9:9474-84.

64. Ba H, Truong-phuoc L, Liu Y, et al. Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon 2016;96:1060-9.

65. Li S, Gu Q, Cao N, et al. Defect enriched N-doped carbon nanoflakes as robust carbocatalysts for H2S selective oxidation. J Mater Chem A 2020;8:8892-902.

66. Osipov AR, Sidorchik IA, Shlyapin DA, Borisov VA, Leontieva NN, Lavrenov AV. Thermocatalytic decomposition of methane on carbon materials and its application in hydrogen production technologies. Kat v prom 2021;1:47-54.

67. Malhotra A, Chen W, Goyal H, et al. Temperature homogeneity under selective and localized microwave heating in structured flow reactors. Ind Eng Chem Res 2021;60:6835-47.

68. Hsieh LT, Lee WJ, Chen CY, Chang MB, Chang HC. Converting methane by using an RF plasma reactor. Plasma Chem Plasma P 1998;18:215-39.

69. Kosinov N, Hensen EJM. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization. Adv Mater 2020;32:e2002565.

70. Beuque A, Hao H, Berrier E, et al. How do the products in methane dehydroaromatization impact the distinct stages of the reaction? Appl Catal B Environ 2022;309:121274.

71. Ikeya N, Woodward JR. Cellular autofluorescence is magnetic field sensitive. Proc Natl Acad Sci U S A 2021;118:e2018043118.

72. Liu D, Huang Y, Hu J, Wang B, Lu Y. Multiscale catalysis under magnetic fields: methodologies, advances, and trends. ChemCatChem 2022;14:e202200889.

73. Harmon NJ, Flatté ME. Distinguishing spin relaxation mechanisms in organic semiconductors. Phys Rev Lett 2013;110:176602.

74. Li X, Wang W, Dong F, et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catal 2021;11:4739-69.

75. Rodgers CT. Magnetic field effects in chemical systems. Pure Appl Chem 2009;81:19-43.

76. Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectroscopy 2007;38:728-36.

77. Julian I, Ramirez H, Hueso JL, Mallada R, Santamaria J. Non-oxidative methane conversion in microwave-assisted structured reactors. Chem Eng J 2019;377:119764.

78. Tuci G, Liu Y, Rossin A, et al. Porous silicon carbide (SiC): a chance for improving catalysts or just another active-phase carrier? Chem Rev 2021;121:10559-665.

79. Pham-huu C, Ledoux M. Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials. Top Catal 2006;40:49-63.

80. Haneishi N, Tsubaki S, Abe E, et al. Enhancement of fixed-bed flow reactions under microwave irradiation by local heating at the vicinal contact points of catalyst particles. Sci Rep 2019;9:222.

81. Khattak HK, Bianucci P, Slepkov AD. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc Natl Acad Sci U S A 2019;116:4000-5.

82. Haneishi N, Tsubaki S, Maitani MM, Suzuki E, Fujii S, Wada Y. Electromagnetic and heat-transfer simulation of the catalytic dehydrogenation of ethylbenzene under microwave irradiation. Ind Eng Chem Res 2017;56:7685-92.

83. Adogwa A, Chukwu E, Malaj A, et al. Catalytic reaction triggered by magnetic induction heating mechanistically distinguishes itself from the standard thermal reaction. ACS Catal 2024;14:4008-17.

84. Kiatphuengporn S, Jantaratana P, Limtrakul J, Chareonpanich M. Magnetic field-enhanced catalytic CO2 hydrogenation and selective conversion to light hydrocarbons over Fe/MCM-41 catalysts. Chem Eng J 2016;306:866-75.

85. Moliner R, Suelves I, Lazaro M, Moreno O. Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry. Int J Hydrogen Energ 2005;30:293-300.

86. Lee EK, Lee SY, Han GY, et al. Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production. Carbon 2004;42:2641-8.

87. Kim MH, Lee EK, Jun JH, et al. Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. Int J Hydrogen Energ 2004;29:187-93.

88. Krzyzynski S, Kozlowski M. Activated carbons as catalysts for hydrogen production via methane decomposition. Int J Hydrogen Energ 2008;33:6172-7.

89. Ashok J, Kumar SN, Venugopal A, Kumari VD, Tripathi S, Subrahmanyam M. COx free hydrogen by methane decomposition over activated carbons. Catal Commun 2008;9:164-9.

90. Xavier NF Jr, Bauerfeldt GF, Sacchi M. First-principles microkinetic modeling unravelling the performance of edge-decorated nanocarbons for hydrogen production from methane. ACS Appl Mater Interfaces 2023;15:6951-62.

91. Lee SY, Kwak JH, Han GY, Lee TJ, Yoon KJ. Characterization of active sites for methane decomposition on carbon black through acetylene chemisorption. Carbon 2008;46:342-8.

92. Moriarty NW, Brown NJ, Frenklach M. Hydrogen migration in the phenylethen-2-yl radical. J Phys Chem A 1999;103:7127-35.

93. Frenklach M, Ping J. On the role of surface migration in the growth and structure of graphene layers. Carbon 2004;42:1209-12.

94. Tokunaga T, Kishi N, Yamakawa K, Sasaki K, Yamamoto T. Methane decomposition for hydrogen production by catalytic activity of carbon black under low flow rate conditions. J Ceram Soc Japan 2017;125:185-9.

95. Thakur B, Chandra Shekar N, Chandra S, Chakravarty S. Effect of sp hybridization and bond-length disorder on magnetism in amorphous carbon - a first-principles study. Diamond and Related Materials 2022;121:108725.

96. Coey M, Sanvito S. The magnetism of carbon. Phys World 2004;17:33-7.

97. Gao Y, Feng X, Gong B, et al. Theoretical design of all-carbon networks with intrinsic magnetism. Carbon 2021;177:11-8.

98. Esquinazi P, Höhne R. Magnetism in carbon structures. J Magn Magn Mater 2005;290-1:20-7.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/