REFERENCES

1. Deng H, Doonan CJ, Furukawa H, et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010;327:846-50.

2. Li H, Eddaoudi M, O’keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402:276-9.

3. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341:1230444.

4. Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem Rev 2020;120:8468-535.

5. Chen L, Xu Q. Metal-organic framework composites for catalysis. Matter 2019;1:57-89.

6. Corma A, García H, Llabrés i Xamena FX. Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 2010;110:4606-55.

7. Pascanu V, González Miera G, Inge AK, Martín-Matute B. Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 2019;141:7223-34.

8. Lu W, Wei Z, Gu ZY, et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 2014;43:5561-93.

9. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 2021;121:12278-326.

10. Chai L, Pan J, Hu Y, Qian J, Hong M. Rational design and growth of MOF-on-MOF heterostructures. Small 2021;17:e2100607.

11. Zhao Z, Ding J, Zhu R, Pang H. The synthesis and electrochemical applications of core–shell MOFs and their derivatives. J Mater Chem A 2019;7:15519-40.

12. Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev 2020;49:301-31.

13. Feng L, Wang K, Powell J, Zhou H. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019;1:801-24.

14. Khan NA, Hasan Z, Jhung SH. Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coord Chem Rev 2018;376:20-45.

15. Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem Soc Rev 2017;46:4614-30.

16. Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable logic in metal-organic frameworks for catalysis. Adv Mater 2021;33:e2007442.

17. Guan BY, Yu XY, Wu HB, Lou XWD. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv Mater 2017;29:1703614.

18. Qiu LG, Xu T, Li ZQ, et al. Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity. Angew Chem Int Ed Engl 2008;47:9487-91.

19. Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 2016;1:16023.

20. Wu Z, Lv Y, Xia Y, Webley PA, Zhao D. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J Am Chem Soc 2012;134:2236-45.

21. Xu X, Zhang Z, Wang X. Well-defined metal-organic-framework hollow nanostructures for catalytic reactions involving gases. Adv Mater 2015;27:5365-71.

22. Xu H, Han J, Zhao B, et al. A facile dual-template-directed successive assembly approach to hollow multi-shell mesoporous metal-organic framework particles. Nat Commun 2023;14:8062.

23. Dai S, Tissot A, Serre C. Recent progresses in metal–organic frameworks based core–shell composites. Adv Energy Mater 2022;12:2100061.

24. Feng L, Wang KY, Lv XL, Yan TH, Zhou HC. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Natl Sci Rev 2020;7:1743-58.

25. He HH, Yuan JP, Cai PY, et al. Yolk-shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions. J Am Chem Soc 2023;145:17164-75.

26. Zhao S, Wang Y, Dong J, et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 2016;1:16184.

27. Dhakshinamoorthy A, Asiri AM, Garcia H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv Mater 2019;31:e1900617.

28. He T, Ni B, Zhang S, et al. Ultrathin 2D zirconium metal-organic framework nanosheets: preparation and application in photocatalysis. Small 2018;14:e1703929.

29. Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X. Structural engineering of low-dimensional metal-organic frameworks: synthesis, properties, and applications. Adv Sci 2019;6:1802373.

30. Saad A, Biswas S, Gkaniatsou E, et al. Metal–organic framework based 1D nanostructures and their superstructures: synthesis, microstructure, and properties. Chem Mater 2021;33:5825-49.

31. Wang J, Feng T, Chen J, He JH, Fang X. Flexible 2D Cu metal: organic framework@MXene film electrode with excellent durability for highly selective electrocatalytic NH3 synthesis. Research 2022;2022:9837012.

32. Han J, Xu H, Zhao B, et al. “Hard” emulsion-induced interface super-assembly: a general strategy for two-dimensional hierarchically porous metal–organic framework nanoarchitectures. J Am Chem Soc 2024;146:18979-88.

33. Furukawa S, Hirai K, Nakagawa K, et al. Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew Chem Int Ed Engl 2009;48:1766-70.

34. Li T, Sullivan JE, Rosi NL. Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J Am Chem Soc 2013;135:9984-7.

35. Haldar R, Wöll C. Hierarchical assemblies of molecular frameworks - MOF-on-MOF epitaxial heterostructures. Nano Res 2021;14:355-68.

36. Chai H, Yu K, Zhao Y, et al. MOF-On-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing. Anal Chem 2023;95:10785-94.

37. Qin Y, Li Z, Duan Y, Guo J, Zhao M, Tang Z. Nanostructural engineering of metal-organic frameworks: construction strategies and catalytic applications. Matter 2022;5:3260-310.

38. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev 2018;47:6267-95.

39. Cirujano FG, Martin N, Wee LH. Design of hierarchical architectures in metal–oganic frameworks for catalysis and adsorption. Chem Mater 2020;32:10268-95.

40. Qiao J, Liu X, Zhang L, Liu Y. Self-assembly of 3p-block metal-based metal-organic frameworks from structural perspective. Chem Res Chin Univ 2022;38:31-44.

41. Zhang J, Shen Y, Jin N, et al. Chemo-biocascade reactions enabled by metal-organic framework micro-nanoreactor. Research 2022;2022:9847698.

42. Xu X, Deng Q, Chen HC, et al. Metal-organic frameworks offering tunable binary active sites toward highly efficient urea oxidation electrolysis. Research 2022;2022:9837109.

43. Zheng HQ, Zhang L, Lu M, et al. Precise design and deliberate tuning of turn-on fluorescence in tetraphenylpyrazine-based metal-organic frameworks. Research 2022;2022:9869510.

44. Li K, Yang J, Gu J. Hierarchically porous MOFs synthesized by soft-template strategies. Acc Chem Res 2022;55:2235-47.

45. Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018;359:206-10.

46. Wei Y, Zou L, Wang H, Wang Y, Xu Q. Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications. Adv Energy Mater 2022;12:2003970.

47. Han X, Zhang T, Wang X, et al. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat Commun 2022;13:2900.

48. Zhou X, Jin H, Xia BY, Davey K, Zheng Y, Qiao SZ. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv Mater 2021;33:e2104341.

49. Li K, Yang J, Huang R, Lin S, Gu J. Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and hofmeister ion. Angew Chem Int Ed Engl 2020;59:14124-8.

50. Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020;49:4681-736.

51. Liu M, Hudson ZM. Macro-/mesoporous metal–organic frameworks templated by amphiphilic block copolymers enable enhanced uptake of large molecules. Adv Funct Mater 2023;33:2214262.

52. Chen J, Li K, Yang J, Gu J. Hierarchical large-pore MOFs templated from poly(ethylene oxide)-b-polystyrene diblock copolymer with tuneable pore sizes. Chem Commun 2022;58:10028-31.

53. You Y, Li F, Ai Y, et al. Diblock copolymers directing construction of hierarchically porous metal-organic frameworks for enhanced-performance supercapacitors. Nanotechnology 2021;32:165601.

54. Yang J, Li K, Gu J. Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA. ACS Mater Lett 2022;4:385-91.

55. Li K, Lin S, Li Y, Zhuang Q, Gu J. Aqueous-phase synthesis of mesoporous Zr-based MOFs templated by amphoteric surfactants. Angew Chem Int Ed Engl 2018;57:3439-43.

56. Li K, Zhao Y, Yang J, Gu J. Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat Commun 2022;13:1879.

57. Wu T, Chen G, Han J, et al. Construction of three-dimensional dendritic hierarchically porous metal-organic framework nanoarchitectures via noncentrosymmetric pore-induced anisotropic assembly. J Am Chem Soc 2023;145:16498-507.

58. Wang C, Zhang H, Wang Y, et al. A general strategy for the synthesis of hierarchically ordered metal-organic frameworks with tunable macro-, meso-, and micro-pores. Small 2023;19:e2206116.

59. Yang Q, Yang CC, Lin CH, Jiang HL. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew Chem Int Ed Engl 2019;58:3511-5.

60. Li C, Pan Y, Xiao T, et al. Metal organic framework cubosomes. Angew Chem Int Ed Engl 2023;62:e202215985.

61. Li Q, Dai Z, Wu J, et al. Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Adv Energy Mater 2020;10:1903750.

62. Hong H, Liu J, Huang H, et al. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries. J Am Chem Soc 2019;141:14764-71.

63. Song Y, Song X, Wang X, et al. Two-dimensional metal-organic framework superstructures from ice-templated self-assembly. J Am Chem Soc 2022;144:17457-67.

64. Li Z, Xing X, Meng D, et al. Hierarchical structure with highly ordered macroporous-mesoporous metal-organic frameworks as dual function for CO2 fixation. iScience 2019;15:514-23.

65. Li K, Yang J, Li C, Gu J. Trimodal hierarchical porous metal–organic frameworks with tunable mesoporous core–shell architectures. ACS Mater Lett 2024;6:233-9.

66. Zhao T, Wang X, Sun Z, et al. Hollow mesoporous metal organic framework single crystals enabled by growth kinetics control for enhanced photocatalysis. Adv Funct Mater 2023;33:2303644.

67. Liu C, Sun Q, Lin L, et al. Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat Commun 2020;11:4971.

68. Li Y, Di Z, Gao J, et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J Am Chem Soc 2017;139:13804-10.

69. Liang J, Kou H, Ding S. Complex hollow bowl-like nanostructures: synthesis, application, and perspective. Adv Funct Mater 2021;31:2007801.

70. Zhong G, Chen G, Han J, et al. Anisotropic interface successive assembly for bowl-shaped metal-organic framework nanoreactors with precisely controllable meso-/microporous nanodomains. ACS Nano 2023;17:25061-9.

71. Lee G, Lee S, Oh S, Kim D, Oh M. Tip-to-middle anisotropic MOF-On-MOF growth with a structural adjustment. J Am Chem Soc 2020;142:3042-9.

72. Zhang Q, Yang Z, Chen B, Liang X. Phase-competition-driven formation of hierarchical FeNiZn-MIL-88B-on-MOF-5 octapods displaying high selectivity for the RWGS reaction. Chem Commun 2019;55:8450-3.

73. Kwon O, Kim JY, Park S, et al. Computer-aided discovery of connected metal-organic frameworks. Nat Commun 2019;10:3620.

74. Wang F, Fan Y, Ma Y, Li T. Sequential oriented growth of Zr-fcu-MOFs on different crystal facets of MIL-96(Al). Cryst Growth Des 2021;21:4571-8.

75. Yu Y, Li S, Huang L, et al. Solar-driven CO2 conversion promoted by MOF-on-MOF homophase junction. Catal Commun 2021;150:106270.

76. Ren S, Duan X, Ge F, Zhang M, Zheng H. Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting. J Power Sources 2020;480:228866.

77. Zha Q, Yuan F, Qin G, Ni Y. Cobalt-based MOF-on-MOF two-dimensional heterojunction nanostructures for enhanced oxygen evolution reaction electrocatalytic activity. Inorg Chem 2020;59:1295-305.

78. Zhao M, Chen J, Chen B, et al. Selective epitaxial growth of oriented hierarchical metal-organic framework heterostructures. J Am Chem Soc 2020;142:8953-61.

79. Wang XG, Xu L, Li MJ, Zhang XZ. Construction of flexible-on-rigid hybrid-phase metal-organic frameworks for controllable multi-drug delivery. Angew Chem Int Ed Engl 2020;59:18078-86.

80. Lyu D, Xu W, Wang Y. Low-symmetry MOF-based patchy colloids and their precise linking via site-selective liquid bridging to form supra-colloidal and supra-framework architectures. Angew Chem Int Ed Engl 2022;61:e202115076.

81. Li A, Qiao X, Liu K, Bai W, Wang T. Hollow metal organic framework improves the sensitivity and anti-interference of the detection of exhaled volatile organic compounds. Adv Funct Mater 2022;32:2202805.

82. Yao W, Hu A, Ding J, et al. Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction. Adv Mater 2023;35:e2301894.

83. Cai ZX, Wang ZL, Xia YJ, et al. Tailored catalytic nanoframes from metal-organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew Chem Int Ed Engl 2021;60:4747-55.

84. Liu W, Huang J, Yang Q, et al. Multi-shelled hollow metal-organic frameworks. Angew Chem Int Ed Engl 2017;56:5512-6.

85. Qin Y, Han X, Li Y, et al. Hollow mesoporous metal–organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal 2020;10:5973-8.

86. Liu XY, Zhang F, Goh TW, et al. Using a multi-shelled hollow metal-organic framework as a host to switch the guest-to-host and guest-to-guest interactions. Angew Chem Int Ed Engl 2018;57:2110-4.

87. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Defective metal-organic frameworks. Adv Mater 2018;30:e1704501.

88. Park J, Feng D, Zhou HC. Structure-assisted functional anchor implantation in robust metal-organic frameworks with ultralarge pores. J Am Chem Soc 2015;137:1663-72.

89. Zhou Y, Yan P, Zhang S, et al. CO2 coordination-driven top-down synthesis of a 2D non-layered metal–organic framework. Fundam Res 2022;2:674-81.

90. Cai G, Ma X, Kassymova M, Sun K, Ding M, Jiang HL. Large-scale production of hierarchically porous metal-organic frameworks by a reflux-assisted post-synthetic ligand substitution strategy. ACS Cent Sci 2021;7:1434-40.

91. Huang C, Sun W, Jin Y, et al. A general synthesis of nanostructured conductive metal-organic frameworks from insulating MOF precursors for supercapacitors and chemiresistive sensors. Angew Chem Int Ed Engl 2024;63:e202313591.

92. Yu D, Shao Q, Song Q, et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat Commun 2020;11:927.

93. León-Alcaide L, López-Cabrelles J, Esteve-Rochina M, et al. Implementing mesoporosity in zeolitic imidazolate frameworks through clip-off chemistry in heterometallic iron-zinc ZIF-8. J Am Chem Soc 2023;145:23249-56.

94. Albolkany MK, Liu C, Wang Y, et al. Molecular surgery at microporous MOF for mesopore generation and renovation. Angew Chem Int Ed Engl 2021;60:14601-8.

95. Bai W, Chen J, Wang X, Zhu J, Fu Y. Transformation of ZIF-67 nanocubes to ZIF-L nanoframes. J Am Chem Soc 2024;146:79-83.

96. Dutta S, Gurumoorthi A, Lee S, et al. Sculpting in-plane fractal porous patterns in two-dimensional MOF nanocrystals for photoelectrocatalytic CO2 reduction. Angew Chem Int Ed Engl 2023;62:e202303890.

97. Wei J, Cheng N, Liang Z, et al. Heterometallic metal–organic framework nanocages of high crystallinity: an elongated channel structure formed in situ through metal-ion (M = W or Mo) doping. J Mater Chem A 2018;6:23336-44.

98. Tu M, Xia B, Kravchenko DE, et al. Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nat Mater 2021;20:93-9.

99. Ai Z, Jiao L, Wang J, Jiang H. Generation of hierarchical pores in metal–organic frameworks by introducing rigid modulator. CCS Chem 2022;4:3705-14.

100. Wang KY, Yang Z, Zhang J, et al. Creating hierarchical pores in metal-organic frameworks via postsynthetic reactions. Nat Protoc 2023;18:604-25.

101. Zheng F, Lin T, Wang K, Wang Y, Li G. Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis. Nano Res 2023;16:12919-35.

102. Choe K, Zheng F, Wang H, et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew Chem Int Ed Engl 2020;59:3650-7.

103. Wei RJ, You PY, Duan H, et al. Ultrathin metal-organic framework nanosheets exhibiting exceptional catalytic activity. J Am Chem Soc 2022;144:17487-95.

104. Wang Z, Ge L, Zhang G, et al. The controllable synthesis of urchin-shaped hierarchical superstructure MOFs with high catalytic activity and stability. Chem Commun 2021;57:8758-61.

105. Xuan W, Zhu C, Liu Y, Cui Y. Mesoporous metal-organic framework materials. Chem Soc Rev 2012;41:1677-95.

106. Cao L, Lin Z, Peng F, et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew Chem Int Ed Engl 2016;55:4962-6.

107. Zhang F, Zhang J, Zhang B, et al. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat Commun 2020;11:1431.

108. Chang GG, Ma XC, Zhang YX, et al. Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Adv Mater 2019;31:e1904969.

109. Cai G, Jiang HL. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew Chem Int Ed Engl 2017;56:563-7.

110. Xu Z, Li L, Chen X, Fang C, Xiao G. Mesoporous zeolitic imidazolate frameworks. CCS Chem 2022;4:2906-13.

111. Guo J, Qin Y, Zhu Y, et al. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem Soc Rev 2021;50:5366-96.

112. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

113. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008;7:845-54.

114. Xu Y, Kraft M, Xu R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev 2016;45:3039-52.

115. Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science 2011;334:935-9.

116. Wang Y, Wang X, She P, Guan D, Song L, Xu J. Nature-inspired three-dimensional Au/spinach as a binder-free and self-standing cathode for high-performance Li-O2 batteries. Chem Res Chin Univ 2022;38:200-8.

117. Peng Y, Sanati S, Morsali A, García H. Metal-organic frameworks as electrocatalysts. Angew Chem Int Ed Engl 2023;62:e202214707.

118. Pan X, Zhu Q, Yu K, et al. One-dimensional metal-organic frameworks: synthesis, structure and application in electrocatalysis. Next Mater 2023;1:100010.

119. Ge K, Sun S, Zhao Y, et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew Chem Int Ed Engl 2021;60:12097-102.

120. Choi WH, Moon BC, Park DG, et al. Autogenous production and stabilization of highly loaded sub-nanometric particles within multishell hollow metal-organic frameworks and their utilization for high performance in Li-O2 batteries. Adv Sci 2020;7:2000283.

121. Shinde SS, Lee CH, Jung J, et al. Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ Sci 2019;12:727-38.

122. Meng X, Liu L, Ouyang S, et al. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv Mater 2016;28:6781-803.

123. Li R, Zhang W, Zhou K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv Mater 2018;30:e1705512.

124. Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020;2:100027.

125. Zhan W, Sun L, Han X. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nanomicro Lett 2019;11:1.

126. Qian Y, Zhang F, Pang H. A review of MOFs and their composites-based photocatalysts: synthesis and applications. Adv Funct Mater 2021;31:2104231.

127. Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically porous metal-organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH. Angew Chem Int Ed Engl 2021;60:24849-53.

128. Wu T, Shi Y, Wang Z, et al. Unsaturated NiII centers mediated the coordination activation of benzylamine for enhancing photocatalytic activity over ultrathin Ni MOF-74 nanosheets. ACS Appl Mater Interfaces 2021;13:61286-95.

129. He T, Chen S, Ni B, et al. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew Chem Int Ed Engl 2018;57:3493-8.

130. Li H, Sun Y, Yuan ZY, Zhu YP, Ma TY. Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew Chem Int Ed Engl 2018;57:3222-7.

131. Qi SC, Sun Z, Yang ZH, et al. Photo-responsive carbon capture over metalloporphyrin-C60 metal-organic frameworks via charge-transfer. Research 2023;6:0261.

132. Cheng X, Dao X, Wang S, Zhao J, Sun W. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal 2021;11:650-8.

133. Guo F, Yang M, Li R, He Z, Wang Y, Sun W. Nanosheet-engineered NH2-MIL-125 with highly active facets for enhanced solar CO2 reduction. ACS Catal 2022;12:9486-93.

134. Liu Z, Chen Z, Li M, et al. Construction of single Ni atom-immobilized ZIF-8 with ordered hierarchical pore structures for selective CO2 photoreduction. ACS Catal 2023;13:6630-40.

135. Liu C, Lin L, Sun Q, et al. Site-specific growth of MOF-on-MOF heterostructures with controllable nano-architectures: beyond the combination of MOF analogues. Chem Sci 2020;11:3680-6.

136. Gong X, Gnanasekaran K, Chen Z, et al. Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy. J Am Chem Soc 2020;142:17224-35.

137. Wang Y, Jiang ZJ, Wang DR, Lu W, Li D. Machine learning-assisted discovery of propane-selective metal-organic frameworks. J Am Chem Soc 2024;146:6955-61.

138. Pétuya R, Durdy S, Antypov D, et al. Machine-learning prediction of metal-organic framework guest accessibility from linker and metal chemistry. Angew Chem Int Ed Engl 2022;61:e202114573.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/