REFERENCES

1. Ball M, Weeda M. The hydrogen economy - Vision or reality? Int J Hydrogen Energ 2015;40:7903-19.

2. Turner JA. Sustainable hydrogen production. Science 2004;305:972-4.

3. Fleischmann S, Mitchell JB, Wang R, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem Rev 2020;120:6738-82.

4. Xie H, Zhao Z, Liu T, et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022;612:673-8.

5. Zhang M, Liu Q, Sun W, et al. Nanostructured intermetallics: from rational synthesis to energy electrocatalysis. Chem Synth 2023;3:28.

6. Xie X, Du L, Yan L, et al. Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv Funct Mater 2022;32:2110036.

7. Liu W, Niu X, Tang J, et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem Synth 2023;3:44.

8. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 2017;46:337-65.

9. Cui X, Ren P, Ma C, et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv Mater 2020;32:e1908126.

10. An L, Wei C, Lu M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 2021;33:e2006328.

11. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 2012;3:399-404.

12. McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 2015;137:4347-57.

13. Pei Y, Guo S, Ju Q, et al. Interface engineering with ultralow ruthenium loading for efficient water splitting. ACS Appl Mater Interfaces 2020;12:36177-85.

14. Zhao G, Li P, Cheng N, Dou SX, Sun W. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium(V), and beyond. Adv Mater 2020;32:e2000872.

15. Li H, Li G. Novel palladium-based nanomaterials for multifunctional ORR/OER/HER electrocatalysis. J Mater Chem A 2023;11:9383-400.

16. Trotochaud L, Ranney JK, Williams KN, Boettcher SW. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 2012;134:17253-61.

17. Vijayapradeep S, Kumar RS, Karthikeyan S, Ramakrishnan S, Yoo DJ. Constructing micro-nano rod-shaped iron-molybdenum oxide heterojunctions to enhance overall water electrolysis. Mater Today Chem 2024;36:101934.

18. Zhang B, Xiao C, Xie S, Liang J, Chen X, Tang Y. Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem Mater 2016;28:6934-41.

19. Li H, Chen S, Zhang Y, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun 2018;9:2452.

20. Zhu Y, Liu Y, Ren T, Yuan Z. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv Funct Mater 2015;25:7337-47.

21. Sai KNS, Tang Y, Dong L, Yu XY, Hong Z. N2 plasma-activated NiO nanosheet arrays with enhanced water splitting performance. Nanotechnology 2020;31:455709.

22. Yang Q, Lu Z, Liu J, et al. Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog Nat Sci Mater Int 2013;23:351-66.

23. Hou J, Wu Y, Zhang B, Cao S, Li Z, Sun L. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv Funct Mater 2019;29:1808367.

24. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015;44:5148-80.

25. Qian Q, Li Y, Liu Y, Yu L, Zhang G. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv Mater 2019;31:e1901139.

26. Liu M, Kong L, Wang X, He J, Bu XH. Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution. Small 2019;15:e1903410.

27. Du J, Li F, Sun L. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem Soc Rev 2021;50:2663-95.

28. Tang Y, Lan Y. Rational design and synthesis of advanced metal-organic frameworks for electrocatalytic water splitting. Sci China Chem 2023;66:943-65.

29. Zhou C, Dong C, Wang W, et al. An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium–sulfur batteries. Interdisciplinary Mater 2024;3:306-15.

30. Lu XF, Liao PQ, Wang JW, et al. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 2016;138:8336-9.

31. Zhao S, Wang Y, Dong J, et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 2016;1:16184.

32. Jiang Y, Chen TY, Chen JL, et al. Heterostructured bimetallic MOF-on-MOF architectures for efficient oxygen evolution reaction. Adv Mater 2024;36:e2306910.

33. Cheng W, Wu ZP, Luan D, Zang SQ, Lou XWD. Synergetic cobalt-copper-based bimetal-organic framework nanoboxes toward efficient electrochemical oxygen evolution. Angew Chem Int Ed Engl 2021;60:26397-402.

34. Zhu D, Liu J, Wang L, et al. A 2D metal-organic framework/Ni(OH)2 heterostructure for an enhanced oxygen evolution reaction. Nanoscale 2019;11:3599-605.

35. Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc 2015;137:4119-25.

36. Iqbal S, Safdar B, Hussain I, Zhang K, Chatzichristodoulou C. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv Energy Mater 2023;13:2203913.

37. Yang H, Wang X, Hu Q, et al. Recent progress in self-supported catalysts for CO2 electrochemical reduction. Small Methods 2020;4:1900826.

38. Zhang T, Sun J, Guan J. Self-supported transition metal chalcogenides for oxygen evolution. Nano Res 2023;16:8684-711.

39. Wang J, Jiang Y, Liu C, et al. In situ growth of hierarchical bimetal-organic frameworks on nickel-iron foam as robust electrodes for the electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2022;614:532-7.

40. Li FL, Shao Q, Huang X, Lang JP. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed Engl 2018;57:1888-92.

41. Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 2017;8:15341.

42. Zhao X, Tao K, Han L. Self-supported metal-organic framework-based nanostructures as binder-free electrodes for supercapacitors. Nanoscale 2022;14:2155-66.

43. Zhang X, Jin M, Jia F, et al. Noble-metal-free oxygen evolution reaction electrocatalysts working at high current densities over 1000 mA cm -2 : from fundamental understanding to design principles. Energy Environ Mater 2023;6:e12457.

44. Goswami A, Ghosh D, Pradhan D, Biradha K. In situ grown Mn(II) MOF upon nickel foam acts as a robust self-supporting bifunctional electrode for overall water splitting: a bimetallic synergistic collaboration strategy. ACS Appl Mater Interfaces 2022;14:29722-34.

45. Wang Y, Yan L, Dastafkan K, et al. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv Mater 2021;33:e2006351.

46. Jiao L, Wei W, Li X, et al. Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Met 2022;41:3654-61.

47. Zhong L, He L, Wang N, et al. Preparation of metal-organic framework from in situ self-sacrificial stainless-steel matrix for efficient water oxidation. Appl Catal B Environ 2023;325:122343.

48. Luo Y, Zhang Z, Chhowalla M, Liu B. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv Mater 2022;34:e2108133.

49. Wang Z, Xu J, Yang J, Xue Y, Dai L. Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem Eng J 2022;427:131498.

50. Wang Y, Liu B, Shen X, et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv Energy Mater 2021;11:2003759.

51. Zhang B, Zheng Y, Ma T, et al. Designing MOF nanoarchitectures for electrochemical water splitting. Adv Mater 2021;33:e2006042.

52. Liang Q, Chen J, Wang F, Li Y. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 2020;424:213488.

53. Wang X, Zhou W, Zhai S. et al. Metal-organic frameworks: direct synthesis by organic acid-etching and reconstruction disclosure as oxygen evolution electrocatalysts. Angew Chem Int Ed Engl 2024;63:e202400323.

54. Li S, Wang Z, Wang T, et al. Preparation of trimetallic-organic framework film electrodes via secondary growth for efficient oxygen evolution reaction. Chemistry 2023;29:e202301129.

55. Jiang S, Suo H, Zheng X, et al. Lightest metal leads to big change: lithium-mediated metal oxides for oxygen evolution reaction. Adv Energy Mater 2022;12:2201934.

56. Wang N, Ou P, Miao RK, et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J Am Chem Soc 2023;145:7829-36.

57. Lin C, Li J, Li X, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal 2021;4:1012-23.

58. Xu S, Feng S, Yu Y, et al. Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation. Nat Commun 2024;15:1720.

59. Liu D, Xu W, Liu Q, et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: synthesis, characterization and electrocatalytic application. Nano Res 2016;9:2079-87.

60. You B, Jiang N, Sheng M, Bhushan MW, Sun Y. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal 2016;6:714-21.

61. Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, Alshareef HN. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett 2016;16:7718-25.

62. Görlin M, Chernev P, Ferreira de Araújo J, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J Am Chem Soc 2016;138:5603-14.

63. Liu Y, Ying Y, Fei L, et al. Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J Am Chem Soc 2019;141:8136-45.

64. Li S, Xiao Y, Yan H, et al. Ultrafine platinum nanoparticles anchored in porous aromatic frameworks for efficient hydrogen evolution reaction. Chem Commun 2023;59:4766-9.

65. Pan C, Liu Z, Huang M. 2D iron-doped nickel MOF nanosheets grown on nickel foam for highly efficient oxygen evolution reaction. Appl Surf Sci 2020;529:147201.

66. Zhou W, Xue Z, Liu Q, Li Y, Hu J, Li G. Trimetallic MOF-74 films grown on Ni foam as bifunctional electrocatalysts for overall water splitting. ChemSusChem 2020;13:5647-53.

67. Liu Q, Xie L, Shi X, et al. High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorg Chem Front 2018;5:1570-4.

68. Chen J, Ren B, Cui H, Wang C. Constructing pure phase tungsten-based bimetallic carbide nanosheet as an efficient bifunctional electrocatalyst for overall water splitting. Small 2020;16:e1907556.

69. Hong Q, Wang Y, Wang R, et al. In situ coupling of carbon dots with Co-ZIF nanoarrays enabling highly efficient oxygen evolution electrocatalysis. Small 2023;19:e2206723.

70. Xu Z, Yeh CL, Jiang Y, et al. Orientation-adjustable metal-organic framework nanorods for efficient oxygen evolution reaction. ACS Appl Mater Interfaces 2021;13:28242-51.

71. Huang L, Gao G, Zhang H, Chen J, Fang Y, Dong S. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy 2020;68:104296.

72. Raja D, Chuah X, Lu S. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv Energy Mater 2018;8:1801065.

73. Wang C, Feng Y, Sun H, et al. Self-optimized metal–organic framework electrocatalysts with structural stability and high current tolerance for water oxidation. ACS Catal 2021;11:7132-43.

74. Li D, Li Q, Gu Z, Zhang J. A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. J Mater Chem A 2019;7:18519-28.

75. Cai G, Zhang W, Jiao L, Yu S, Jiang H. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017;2:791-802.

76. Li W, Watzele S, El-Sayed HA, et al. Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal-organic frameworks. J Am Chem Soc 2019;141:5926-33.

77. Li H, Du Z, He F, Chen S, Yang H, Tang K. Cobalt carbonate hydroxide assisted formation of self-supported CoNi-based metal–organic framework nanostrips as efficient electrocatalysts for oxygen evolution reaction. Int J Hydrogen Energ 2023;48:15566-73.

78. Cao C, Ma D, Xu Q, Wu X, Zhu Q. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Funct Mater 2019;29:1807418.

79. Zheng F, Zhang W, Zhang X, Zhang Y, Chen W. Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv Funct Mater 2021;31:2103318.

80. Li S, Wang T, Tang D, et al. Metal-organic framework integrating ionic framework and bimetallic coupling effect for highly efficient oxygen evolution reaction. Adv Sci 2022;9:e2203712.

81. Li S, Zeng S, Tian Y, Jing X, Sun F, Zhu G. Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation. Nano Res 2021;14:3288-93.

82. Cheng W, Lu XF, Luan D, Lou XWD. NiMn-based bimetal-organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew Chem Int Ed Engl 2020;59:18234-9.

83. Babu A, Varghese A. Electrochemical deposition for metal organic frameworks: advanced energy, catalysis, sensing and separation applications. J Electroanal Chem 2023;937:117417.

84. Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J. Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A 2020;8:7569-87.

85. Varsha MV, Nageswaran G. Review - direct electrochemical synthesis of metal organic frameworks. J Electrochem Soc 2020;167:155527.

86. Guo Y, Zhang C, Zhang J, et al. Metal–organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain Chem Eng 2021;9:2047-56.

87. Wang L, Wu Y, Cao R, et al. Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS Appl Mater Interfaces 2016;8:16736-43.

88. Shahbazi Farahani F, Rahmanifar MS, Noori A, et al. Correction to “Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications”. J Am Chem Soc 2022;144:15903-6.

89. Lyu S, Guo C, Wang J, et al. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat Commun 2022;13:6171.

90. Du J, Xu S, Sun L, Li F. Iron carbonate hydroxide templated binary metal-organic frameworks for highly efficient electrochemical water oxidation. Chem Commun 2019;55:14773-6.

91. Lin H, Senthil Raja D, Chuah X, Hsieh C, Chen Y, Lu S. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl Catal B Environ 2019;258:118023.

92. Sun X, Zhang X, Li Y, et al. In situ construction of flexible V-Ni redox centers over Ni-based MOF nanosheet arrays for electrochemical water oxidation. Small Methods 2021;5:e2100573.

93. Li Y, Wu Y, Li T, et al. Tuning the electronic structure of a metal–organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. Carbon Energy 2023;5:e265.

94. Wu J, Yu Z, Zhang Y, et al. Understanding the effect of second metal on CoM (M = Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction. Small 2021;17:e2105150.

95. Raja D, Huang C, Chen Y, Choi Y, Lu S. Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Appl Catal B Environ 2020;279:119375.

96. Jiang W, Wang J, Jiang Y, et al. Multivalent ruthenium immobilized by self-supported NiFe–organic frameworks for efficient electrocatalytic overall water splitting. J Mater Chem A 2023;11:2769-79.

97. Zhao M, Li H, Li W, et al. Ru-doping enhanced electrocatalysis of metal-organic framework nanosheets toward overall water splitting. Chemistry 2020;26:17091-6.

98. Zhang R, Ren X, Hao S, et al. Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J Mater Chem A 2018;6:1985-90.

99. Li F, Jiang M, Lai C, Xu H, Zhang K, Jin Z. Yttrium- and cerium-codoped ultrathin metal-organic framework nanosheet arrays for high-efficiency electrocatalytic overall water splitting. Nano Lett 2022;22:7238-45.

100. Yao N, Jia H, Fan Z, et al. Nitridation-induced metal–organic framework nanosheet for enhanced water oxidation electrocatalysis. J Energy Chem 2022;64:531-7.

101. Liu Y, Li X, Zhang S, et al. Molecular engineering of metal-organic frameworks as efficient electrochemical catalysts for water oxidation. Adv Mater 2023;35:e2300945.

102. Xue Z, Liu K, Liu Q, et al. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun 2019;10:5048.

103. Ji Q, Kong Y, Wang C, et al. Lattice strain induced by linker scission in metal–organic framework nanosheets for oxygen evolution reaction. ACS Catal 2020;10:5691-7.

104. Cheng W, Zhao X, Su H, et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat Energy 2019;4:115-22.

105. Xu H, Fei B, Cai G, et al. Boronization-induced ultrathin 2D nanosheets with abundant crystalline–amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv Energy Mater 2020;10:1902714.

106. Zhai Q, Hu KJ, Shi Y, et al. Amorphous metal-organic framework-derived electrocatalyst to boost water oxidation. J Phys Chem Lett 2023;14:1156-64.

107. Li Y, Wu Y, Li T, et al. Amorphous engineering of scalable metal-organic framework-derived electrocatalyst for highly efficient oxygen evolution reaction. Small 2024:e2311356.

108. Li Z, Hu M, Wang P, Liu J, Yao J, Li C. Heterojunction catalyst in electrocatalytic water splitting. Coord Chem Rev 2021;439:213953.

109. Deng L, Hu F, Ma M, et al. Electronic modulation caused by interfacial Ni-O-M (M=Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew Chem Int Ed Engl 2021;60:22276-82.

110. Yang J, Shen Y, Sun Y, Xian J, Long Y, Li G. Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew Chem Int Ed Engl 2023;62:e202302220.

111. Cheng C, Cheng P, Huang C, Senthil Raja D, Wu Y, Lu S. Gold nanocrystal decorated trimetallic metal organic frameworks as high performance electrocatalysts for oxygen evolution reaction. Appl Catal B Environ 2021;286:119916.

112. Zhang W, Hu Q, Wang L, et al. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl Catal B Environ 2021;286:119906.

113. Wei X, Li N, Liu N. Ultrathin NiFeZn-MOF nanosheets containing few metal oxide nanoparticles grown on nickel foam for efficient oxygen evolution reaction of electrocatalytic water splitting. Electrochim Acta 2019;318:957-65.

114. Li W, Zhang H, Zhang K, et al. Altered electronic structure of trimetallic FeNiCo-MOF nanosheets for efficient oxygen evolution. Chem Commun 2023;59:4750-3.

115. Xu J, Zhao Y, Li M, Fan G, Yang L, Li F. A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochim Acta 2019;307:275-84.

116. Kung CW, Mondloch JE, Wang TC, et al. Metal-organic framework thin films as platforms for atomic layer deposition of cobalt ions to enable electrocatalytic water oxidation. ACS Appl Mater Interfaces 2015;7:28223-30.

117. Li CF, Xie LJ, Zhao JW, et al. Interfacial Fe-O-Ni-O-Fe bonding regulates the active Ni sites of Ni-MOFs via iron doping and decorating with FeOOH for super-efficient oxygen evolution. Angew Chem Int Ed Engl 2022;61:e202116934.

118. Ni C, Zheng H, Liu W, et al. Linker defects in metal–organic frameworks for the construction of interfacial dual metal sites with high oxygen evolution activity. Adv Funct Mater 2023;33:2301075.

119. Qian Z, Wang K, Shi K, et al. Interfacial electron transfer of heterostructured MIL-88A/Ni(OH)2 enhances the oxygen evolution reaction in alkaline solutions. J Mater Chem A 2020;8:3311-21.

120. Wu F, Guo X, Hao G, Hu Y, Jiang W. Electrodeposition of sulfur-engineered amorphous nickel hydroxides on MIL-53(Fe) nanosheets to accelerate the oxygen evolution reaction. Nanoscale 2019;11:14785-92.

121. Mu G, Wang G, Huang Q, et al. A kinetic control strategy for one-pot synthesis of efficient bimetallic metal-organic framework/layered double hydroxide heterojunction oxygen evolution electrocatalysts. Adv Funct Mater 2023;33:2211260.

122. Xiao M, Wu C, Zhu J, et al. In situ generated layered NiFe-LDH/MOF heterostructure nanosheet arrays with abundant defects for efficient alkaline and seawater oxidation. Nano Res 2023;16:8945-52.

123. Ye L, Zhang Y, Zhang M, Gong Y. An ingeniously assembled metal-organic framework on the surface of FeMn co-doped Ni(OH)2 as a high-efficiency electrocatalyst for the oxygen evolution reaction. Dalton Trans 2021;50:11775-82.

124. Zheng W, Liu M, Lee LYS. Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal 2020;10:81-92.

125. Zhong H, Zhang Q, Yu J, et al. Fundamental understanding of structural reconstruction behaviors in oxygen evolution reaction electrocatalysts. Adv Energy Mater 2023;13:2301391.

126. Zheng W, Lee LYS. Metal–organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett 2021;6:2838-43.

127. Zhang L, Wang J, Jiang K, et al. Self-reconstructed metal-organic framework heterojunction for switchable oxygen evolution reaction. Angew Chem Int Ed Engl 2022;61:e202214794.

128. Kandambeth S, Kale VS, Fan D, et al. Unveiling chemically robust bimetallic squarate-based metal–organic frameworks for electrocatalytic oxygen evolution reaction. Adv Energy Mater 2023;13:2202964.

129. Cheng W, Xi S, Wu ZP, Luan D, Lou XW. In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Sci Adv 2021;7:eabk0919.

130. Liu J, Yu Z, Huang J, et al. Redox-active ligands enhance oxygen evolution reaction activity: regulating the spin state of ferric ions and accelerating electron transfer. J Colloid Interface Sci 2023;650:1182-92.

131. Dai L, Fang C, Yao F, et al. Thickness-dependent β/γ-NiOOH transformation of Ni-MOFs in oxygen evolution reaction. Appl Surf Sci 2023;623:156991.

132. Zhao L, Yan J, Huang H, et al. Regulating electronic structure of bimetallic NiFe-THQ conductive metal–organic frameworks to boost catalytic activity for oxygen evolution reaction. Adv Funct Mater 2024;34:2310902.

133. Ding J, Guo D, Wang N, et al. Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction. Angew Chem Int Ed Engl 2023;62:e202311909.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/