REFERENCES
1. Richter, A.; Burrows, J. P.; Nüss, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129-32.
2. Kim, C. H.; Qi, G.; Dahlberg, K.; Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 2010, 327, 1624-7.
3. Han, L.; Cai, S.; Gao, M.; et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem. Rev. 2019, 119, 10916-76.
4. Shan, Y.; Du, J.; Zhang, Y.; et al. Selective catalytic reduction of NOx with NH3: opportunities and challenges of Cu-based small-pore zeolites. Natl. Sci. Rev. 2021, 8, nwab010.
5. Wei, Y.; Wang, S.; Chen, M.; et al. Coaxial 3D printing of zeolite-based core-shell monolithic Cu-SSZ-13@SiO2 catalysts for diesel exhaust treatment. Adv. Mater. 2024, 36, e2302912.
6. Chen, M.; Bi, J.; Liu, C.; Ren, S. Enhancing performance of Fe-SSZ-13 and Cu-Fe-SSZ-13 zeolites for selective catalytic reduction reaction via post-treatment method. Mater. Lett. 2023, 349, 134872.
7. Twigg, M. V. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B. Environ. 2007, 70, 2-15.
8. Zhang, R.; Liu, N.; Lei, Z.; Chen, B. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem. Rev. 2016, 116, 3658-721.
9. Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371-405.
10. Chen, M.; Sun, Q.; Yang, G.; et al. Enhanced performance for selective catalytic reduction of NOx with NH3 over nanosized Cu/SAPO-34 catalysts. ChemCatChem 2019, 11, 3865-70.
11. Djerad, S.; Tifouti, L.; Crocoll, M.; Weisweiler, W. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts. J. Mol. Catal. A. Chem. 2004, 208, 257-65.
12. Martín, J. A.; Yates, M.; Ávila, P.; Suárez, S.; Blanco, J. Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Appl. Catal. B. Environ. 2007, 70, 330-4.
13. Topsøe, N. Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science 1994, 265, 1217-9.
14. Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R. T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts - a review. Catal. Today. 2011, 175, 147-56.
15. Chen, J.; Huang, W.; Bao, S.; et al. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH3-SCR. RSC. Adv. 2022, 12, 27746-65.
16. Wang, Y.; Li, J.; Liu, Z. Selective catalytic reduction of NOx by NH3 over Cu-AEI zeolite catalyst: current status and future perspectives. Appl. Catal. B. Environ. 2024, 343, 123479.
17. Guo, R. T.; Qin, B.; Wei, L. G.; Yin, T. Y.; Zhou, J.; Pan, W. G. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys. Chem. Chem. Phys. 2022, 24, 6363-82.
18. Gao, F.; Tang, X.; Yi, H.; et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 317, 20-31.
19. Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Gu, T. Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Appl. Surf. Sci. 2019, 466, 411-24.
20. Li, Y.; Yu, J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156-74.
22. Kerstens, D.; Smeyers, B.; Van, W. J.; Zhang, Q.; Yu, J.; Sels, B. F. State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Adv. Mater. 2020, 32, e2004690.
23. Sun, Q.; Wang, N.; Yu, J. Advances in catalytic applications of zeolite-supported metal catalysts. Adv. Mater. 2021, 33, e2104442.
24. Sun, Q.; Xie, Z.; Yu, J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. 2018, 5, 542-58.
25. Liu, L.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244-63.
26. Iwamoto, M.; Furukawa, H.; Mine, Y.; Uemura, F.; Mikuriya, S.; Kagawa, S. Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. J. Chem. Soc. Chem. Commun. 1986, 1272-3.
27. Ochońska, J.; Mcclymont, D.; Jodłowski, P.; et al. Copper exchanged ultrastable zeolite Y - A catalyst for NH3-SCR of NOx from stationary biogas engines. Catal. Today. 2012, 191, 6-11.
28. Sullivan, J. A.; Cunningham, J.; Morris, M.; Keneavey, K. Conditions in which Cu-ZSM-5 outperforms supported vanadia catalysts in SCR of NOx by NH3. Appl. Catal. B. Environ. 1995, 7, 137-51.
29. Sjövall, H.; Blint, R. J.; Olsson, L. Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl. Catal. B. Environ. 2009, 92, 138-53.
30. Chen, H.; Sachtler, W. M. Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor. Catal. Today. 1998, 42, 73-83.
31. Shi, X.; Liu, F.; Xie, L.; Shan, W.; He, H. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions. Environ. Sci. Technol. 2013, 47, 3293-8.
32. De-La-Torre, U.; Pereda-Ayo, B.; Moliner, M.; González-Velasco, J. R.; Corma, A. Cu-zeolite catalysts for NOx removal by selective catalytic reduction with NH3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems. Appl. Catal. B. Environ. 2016, 187, 419-27.
33. Xin, Y.; Li, Q.; Zhang, Z. Zeolitic materials for DeNOx selective catalytic reduction. ChemCatChem 2018, 10, 29-41.
34. Andana, T.; Rappé, K. G.; Gao, F.; Szanyi, J.; Pereira-hernandez, X.; Wang, Y. Recent advances in hybrid metal oxide–zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia. Appl. Catal. B. Environ. 2021, 291, 120054.
35. Peden, C. H. Cu/Chabazite catalysts for ‘Lean-Burn’ vehicle emission control. J. Catal. 2019, 373, 384-9.
36. Lezcano-Gonzaleza, I.; Deka, U.; van, B. H. E.; et al. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. Appl. Catal. B. 2014, 154-5, 339-49.
37. Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B. M.; Beale, A. M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx. ACS. Catal. 2013, 3, 413-27.
38. Wilken, N.; Wijayanti, K.; Kamasamudram, K.; et al. Mechanistic investigation of hydrothermal aging of Cu-Beta for ammonia SCR. Appl. Catal. B. Environ. , 2012, 111-2:58.
39. Frey, A. M.; Mert, S.; Due-Hansen, J.; Fehrmann, R.; Christensen, C. H. Fe-BEA zeolite catalysts for NH3-SCR of NOx. Catal. Lett. 2009, 130, 1-8.
40. Rahkamaa-tolonen, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction. Catal. Today. 2005, 100, 217-22.
41. Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187-90.
42. Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 2012, 287, 203-9.
43. Wang, Y.; Han, J.; Chen, M.; et al. Low-silica Cu-CHA zeolite enriched with Al pairs transcribed from silicoaluminophosphate seed: synthesis and ammonia selective catalytic reduction performance. Angew. Chem. Int. Ed. Engl. 2023, 62, e202306174.
44. Ryu, T.; Ahn, N. H.; Seo, S.; et al. Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3-SCR catalysts. Angew. Chem. Int. Ed. Engl. 2017, 56, 3256-60.
45. Jo, D.; Park, G. T.; Ryu, T.; Hong, S. B. Economical synthesis of high-silica LTA zeolites: a step forward in developing a new commercial NH3-SCR catalyst. Appl. Catal. B. Environ. 2019, 243, 212-9.
46. Jo, D.; Ryu, T.; Park, G. T.; et al. Synthesis of high-silica LTA and UFI zeolites and NH3-SCR performance of their copper-exchanged form. ACS. Catal. 2016, 6, 2443-7.
47. Kim, J.; Cho, S. J.; Kim, D. H. Facile synthesis of KFI-type zeolite and its application to selective catalytic reduction of NOx with NH3. ACS. Catal. 2017, 7, 6070-81.
48. Han, S.; Tang, X.; Wang, L.; et al. Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Appl. Catal. B. Environ. 2021, 281, 119480.
49. Zhu, N.; Shan, Y.; Shan, W.; et al. Distinct NO2 effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NOx with NH3. Environ. Sci. Technol. 2020, 54, 15499-506.
50. Moliner, M.; Franch, C.; Palomares, E.; Grill, M.; Corma, A. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. Commun. 2012, 48, 8264-6.
51. Ming, S.; Chen, Z.; Fan, C.; et al. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR. Appl. Catal. A. Gen. 2018, 559, 47-56.
52. Fickel, D. W.; D’addio, E.; Lauterbach, J. A.; Lobo, R. F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B. Environ. 2011, 102, 441-8.
53. Godiksen, A.; Stappen, F. N.; Vennestrøm, P. N. R.; et al. Coordination environment of copper sites in Cu-CHA zeolite investigated by electron paramagnetic resonance. J. Phys. Chem. C. 2014, 118, 23126-38.
54. Chen, D.; Khetan, A.; Lei, H.; et al. Copper site motion promotes catalytic NOx reduction under zeolite confinement. Environ. Sci. Technol. 2023, 57, 16121-30.
55. Paolucci, C.; Khurana, I.; Parekh, A. A.; et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 2017, 357, 898-903.
56. Paolucci, C.; Parekh, A. A.; Khurana, I.; et al. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 2016, 138, 6028-48.
57. Kim, Y. J.; Lee, J. K.; Min, K. M.; Hong, S. B.; Nam, I.; Cho, B. K. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3. J. Catal. 2014, 311, 447-57.
58. Han, S.; Ye, Q.; Cheng, S.; Kang, T.; Dai, H. Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR. Catal. Sci. Technol. 2017, 7, 703-17.
59. Song, J.; Wang, Y.; Walter, E. D.; et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: implications from atomic-level understanding of hydrothermal stability. ACS. Catal. 2017, 7, 8214-27.
60. Iorio JR, Gounder R. Controlling the isolation and pairing of aluminum in chabazite zeolites using mixtures of organic and inorganic structure-directing agents. Chem. Mater. 2016, 28, 2236-47.
61. Iorio JR, Nimlos CT, Gounder R. Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity. ACS. Catal. 2017, 7, 6663-74.
62. Zhang, J.; Shan, Y.; Zhang, L.; et al. Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction. Appl. Catal. B. Environ. 2020, 277, 119193.
63. Gao, F.; Wang, Y.; Washton, N. M.; Kollár, M.; Szanyi, J.; Peden, C. H. F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts. ACS. Catal. 2015, 5, 6780-91.
64. Usui, T.; Liu, Z.; Ibe, S.; et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce. ACS. Catal. 2018, 8, 9165-73.
65. Chen, M.; Li, J.; Xue, W.; et al. Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NOx. J. Am. Chem. Soc. 2022, 144, 12816-24.
66. Chen, M.; Zhao, W.; Wei, Y.; et al. La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts. Nano. Res. 2023, 16, 12126-33.
67. Kang, N.; Wang, Y.; Wen, C. Z.; et al. Understanding enhancement of strong Copper-Yttrium interactions on catalytic properties of Cu/Y-SSZ-13 for NH3-SCR. Chem. Eng. J. 2023, 475, 146114.
68. Iwasaki, M.; Shinjoh, H. A comparative study of “standard”, “fast” and “NO2” SCR reactions over Fe/zeolite catalyst. Appl. Catal. A. Gen. 2010, 390, 71-7.
69. Colombo, M.; Nova, I.; Tronconi, E. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal. Today. 2010, 151, 223-30.
70. Colombo, M.; Nova, I.; Tronconi, E. Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. Catal. Today. 2012, 197, 243-55.
71. Bendrich, M.; Scheuer, A.; Hayes, R.; Votsmeier, M. Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B. Environ. 2018, 222, 76-87.
72. Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.; Weibel, M. The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. J. Catal. 2008, 256, 312-22.
73. Janssens, T. V. W.; Falsig, H.; Lundegaard, L. F.; et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS. Catal. 2015, 5, 2832-45.
74. Schuler, A.; Votsmeier, M.; Kiwic, P.; et al. NH3-SCR on Fe zeolite catalysts - from model setup to NH3 dosing. Chem. Eng. J. 2009, 154, 333-40.
75. Chen, H.; Wei, Z.; Kollar, M.; et al. A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. J. Catal. 2015, 329, 490-8.
76. Shi, X.; Liu, F.; Shan, W.; He, H. Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3. Chin. J. Catal. 2012, 33, 454-64.
77. Yin, C.; Cheng, P.; Li, X.; Yang, R. T. Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu-SSZ-13 catalysts. Catal. Sci. Technol. 2016, 6, 7561-8.
78. Wang, Y.; Xie, L.; Liu, F.; Ruan, W. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3. J. Environ. Sci. 2019, 81, 195-204.
79. Wan, J.; Chen, J.; Zhao, R.; Zhou, R. One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia. J. Environ. Sci. 2021, 100, 306-16.
80. Jouini, H.; Mejri, I.; Petitto, C.; et al. Characterization and NH3-SCR reactivity of Cu-Fe-ZSM-5 catalysts prepared by solid state ion exchange: the metal exchange order effect. Micropor. Mesopor. Mat. 2018, 260, 217-26.
81. Sultana, A.; Sasaki, M.; Suzuki, K.; Hamada, H. Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR. Catal. Commun. 2013, 41, 21-5.
82. Ren, L.; Zhu, L.; Yang, C.; et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem. Commun. 2011, 47, 9789-91.
83. Xie, L.; Liu, F.; Shi, X.; Xiao, F.; He, H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NO with NH3. Appl. Catal. B. Environ. 2015, 179, 206-12.
84. Xie, L.; Liu, F.; Ren, L.; Shi, X.; Xiao, F. S.; He, H. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Environ. Sci. Technol. 2014, 48, 566-72.
85. Shan, Y.; Du, J.; Yu, Y.; Shan, W.; Shi, X.; He, H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction. Appl. Catal. B. Environ. 2020, 266, 118655.
86. Zhang, T.; Li, J.; Liu, J.; et al. High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia. AIChE. J. 2015, 61, 3825-37.
87. Xu, R.; Wang, Z.; Liu, N.; Dai, C.; Zhang, J.; Chen, B. Understanding Zn Functions on hydrothermal stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction. ACS. Catal. 2020, 10, 6197-212.
88. Zhou, X.; Chen, Z.; Guo, Z.; et al. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction. J. Hazard. Mater. 2021, 405, 124177.
89. Du, J.; Wang, J.; Shi, X.; Shan, Y.; Zhang, Y.; He, H. Promoting effect of Mn on in situ synthesized Cu-SSZ-13 for NH3-SCR. Catalysts 2020, 10, 1375.
90. Chen, Z.; Liu, Q.; Guo, L.; et al. The promoting mechanism of in situ Zr doping on the hydrothermal stability of Fe-SSZ-13 catalyst for NH3-SCR reaction. Appl. Catal. B. Environ. 2021, 286, 119816.
91. Pang, L.; Fan, C.; Shao, L.; et al. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust. Chem. Eng. J. 2014, 253, 394-401.
92. Wang, J.; Liu, J.; Tang, X.; Xing, C.; Jin, T. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2021, 418, 129433.
93. Zhu, N.; Hou, L.; Li, S.; Deng, Y. Understanding Na functions on distribution of Cu species within Cu-SSZ-13 for the selective reduction of NOx with NH3. Sep. Purif. Technol. 2024, 347, 127630.
94. Lv, W.; Wang, S.; Wang, P.; et al. Regulation of Al distributions and Cu2+ locations in SSZ-13 zeolites for NH3-SCR of NO by different alkali metal cations. J. Catal. 2021, 393, 190-201.
95. Lee, H.; Song, I.; Jeon, S. W.; Kim, D. H. Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity. Catal. Sci. Technol. 2021, 11, 4838-48.
96. U.S. Drive. Advanced combustion and emission control technical team roadmap. 2013. Available from: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/acec_roadmap_june2013.pdf. [Last accessed on 5 Aug 2024].
97. Zhang, T.; Qiu, F.; Li, J. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NOx with NH3: enhancement of activity, hydrothermal stability and propene poisoning resistance. Appl. Catal. B. Environ. 2016, 195, 48-58.
98. Shih, A. J.; González, J. M.; Khurana, I.; et al. Influence of ZCuOH, Z2Cu, and extraframework CuxOy species in Cu-SSZ-13 on N2O formation during the selective catalytic reduction of NOx with NH3. ACS. Catal. 2021, 11, 10362-76.
99. Zhang, Y.; Zhu, H.; Zhang, T.; et al. Revealing the synergistic deactivation mechanism of hydrothermal aging and SO2 poisoning on Cu/SSZ-13 under SCR condition. Environ. Sci. Technol. 2022, 56, 1917-26.
100. Ye, X.; Schmidt, J. E.; Wang, R. P.; et al. Deactivation of Cu-exchanged automotive-emission NH3-SCR catalysts elucidated with nanoscale resolution using scanning transmission X-ray microscopy. Angew. Chem. Int. Ed. Engl. 2020, 59, 15610-7.
101. Cui, Y.; Wang, Y.; Mei, D.; et al. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts. J. Catal. 2019, 378, 363-75.
102. Chen, M.; Zhao, W.; Wei, Y.; et al. Improving the hydrothermal stability of Al-rich Cu-SSZ-13 zeolite via Pr-ion modification. Chem. Sci. 2024, 15, 5548-54.
103. Clark, A. H.; Nuguid, R. J. G.; Steiger, P.; et al. Selective catalytic reduction of NO with NH3 on Cu-SSZ-13: deciphering the low and high-temperature rate-limiting steps by transient XAS experiments. ChemCatChem 2020, 12, 1429-35.
104. Chen, L.; Janssens, T. V. W.; Vennestrøm, P. N. R.; Jansson, J.; Skoglundh, M.; Grönbeck, H. A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu-CHA. ACS. Catal. 2020, 10, 5646-56.
105. Liu, C.; Kubota, H.; Toyao, T.; Maeno, Z.; Shimizu, K. Mechanistic insights into the oxidation of copper(I) species during NH3-SCR over Cu-CHA zeolites: a DFT study. Catal. Sci. Technol. 2020, 10, 3586-93.
106. Feng, Y.; Wang, X.; Janssens, T. V. W.; et al. First-principles microkinetic model for low-temperature NH3-assisted selective catalytic reduction of NO over Cu-CHA. ACS. Catal. 2021, 11, 14395-407.
107. Hu, W.; Selleri, T.; Gramigni, F.; et al. On the redox mechanism of low-temperature NH3-SCR over Cu-CHA: a combined experimental and theoretical study of the reduction half cycle. Angew. Chem. Int. Ed. Engl. 2021, 60, 7197-204.
108. Feng, Y.; Janssens, T. V. W.; Vennestrøm, P. N. R.; Jansson, J.; Skoglundh, M.; Grönbeck, H. The role of H+- and Cu+-sites for N2O formation during NH3-SCR over Cu-CHA. J. Phys. Chem. C. 2021, 125, 4595-601.
109. Chen, Z.; Guo, L.; Qu, H.; Liu, L.; Xie, H.; Zhong, Q. Controllable positions of Cu2+ to enhance low-temperature SCR activity on novel Cu-Ce-La-SSZ-13 by a simple one-pot method. Chem. Commun. 2020, 56, 2360-3.
110. Yue, Y.; Liu, B.; Qin, P.; et al. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates. Chem. Eng. J. 2020, 398, 125515.
111. Chen, M.; Wei, Y.; Han, J.; Yan, W.; Yu, J. Enhancing catalytic performance of Cu-SSZ-13 for the NH3-SCR reaction via in situ introduction of Fe3+ with diatomite. Mater. Chem. Front. 2021, 5, 7787-95.