REFERENCES

1. Yuan, Y.; Lei, A. Is electrosynthesis always green and advantageous compared to traditional methods? Nat. Commun. 2020, 11, 802.

2. Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS. Cent. Sci. 2021, 7, 415-31.

3. Cabana, J.; Alaan, T.; Crabtree, G. W.; et al. NGenE 2021: electrochemistry is everywhere. ACS. Energy. Lett. 2022, 7, 368-74.

4. Kawamata, Y.; Baran, P. S. Electrosynthesis: sustainability is not enough. Joule 2020, 4, 701-4.

5. Petersen, H. A.; Myren, T. H. T.; O’Sullivan, S. J.; Luca, O. R. Electrochemical methods for materials recycling. Mater. Adv. 2021, 2, 1113-38.

6. Horn, E. J.; Rosen, B. R.; Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS. Cent. Sci. 2016, 2, 302-8.

7. Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. Engl. 2018, 57, 6018-41.

8. Liu, C.; Li, R.; Zhou, W.; et al. Selectivity origin of organic electrosynthesis controlled by electrode materials: a case study on pinacols. ACS. Catal. 2021, 11, 8958-67.

9. Hanssen, B. L.; Siraj, S.; Wong, D. K. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 2016, 35, 1-28.

10. Alkhadra, M. A.; Su, X.; Suss, M. E.; et al. Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 2022, 122, 13547-635.

11. Ahoutou, Y.; Ilinca, A.; Issa, M. Electrochemical cells and storage technologies to increase renewable energy share in cold climate conditions - a critical assessment. Energies 2022, 15, 1579.

12. Krivik, P.; Baca, P. Electrochemical energy storage. In: Zobaa A, editor. Energy storage - technologies and applications. InTech; 2013.

13. Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. Engl. 2018, 57, 4149-55.

14. Paidar, M.; Fateev, V.; Bouzek, K. Membrane electrolysis - history, current status and perspective. Electrochim. Acta. 2016, 209, 737-56.

15. Lodh, J.; Paul, S.; Sun, H.; Song, L.; Schöfberger, W.; Roy, S. Electrochemical organic reactions: a tutorial review. Front. Chem. 2022, 10, 956502.

16. Hilt, G. Basic strategies and types of applications in organic electrochemistry. ChemElectroChem 2020, 7, 395-405.

17. Leow, W. R.; Lum, Y.; Ozden, A.; et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228-33.

18. Marken, F.; Cresswell, A. J.; Bull, S. D. Recent advances in paired electrosynthesis. Chem. Rec. 2021, 21, 2585-600.

19. Sherbo, R. S.; Delima, R. S.; Chiykowski, V. A.; Macleod, B. P.; Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 2018, 1, 501-7.

20. Sherbo, R. S.; Kurimoto, A.; Brown, C. M.; Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 2019, 141, 7815-21.

21. Llorente, M. J.; Nguyen, B. H.; Kubiak, C. P.; Moeller, K. D. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates. J. Am. Chem. Soc. 2016, 138, 15110-3.

22. Wu, T.; Nguyen, B. H.; Daugherty, M. C.; Moeller, K. D. Paired electrochemical reactions and the on-site generation of a chemical reagent. Angew. Chem. Int. Ed. Engl. 2019, 58, 3562-5.

23. Meyer, T. H.; Choi, I.; Tian, C.; Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 2020, 6, 2484-96.

24. Reidell, A. C.; Pazder, K. E.; LeBarron, C. T.; Stewart, S. A.; Hosseini, S. Modified working electrodes for organic electrosynthesis. ACS. Org. Inorg. Au. 2024, 4, 579-603.

25. Gombos, L. G.; Nikl, J.; Waldvogel, S. R. Dual roles of supporting electrolytes in organic electrosynthesis. ChemElectroChem 2024, 11, e202300730.

26. Kishioka, S. Evaluation of formal redox potential from Nernstian plots using higher-order derivative spectra with no background correction. J. Electroanal. Chem. 2023, 930, 117151.

27. Nutting, J. E.; Gerken, J. B.; Stamoulis, A. G.; Bruns, D. L.; Stahl, S. S. “How should I think about voltage? What is overpotential?”: Establishing an organic chemistry intuition for electrochemistry. J. Org. Chem. 2021, 86, 15875-85.

28. Dutta, N.; Bagchi, D.; Chawla, G.; Peter, S. C. A guideline to determine faradaic efficiency in electrochemical CO2 reduction. ACS. Energy. Lett. 2024, 9, 323-8.

29. Medici, F.; Resta, S.; Andolina, S.; Benaglia, M. Recent advances in enantioselective catalytic electrochemical organic transformations. Catalysts 2023, 13, 944.

30. Okada, Y.; Chiba, K. Redox-tag processes: intramolecular electron transfer and its broad relationship to redox reactions in general. Chem. Rev. 2018, 118, 4592-630.

31. Yoshida, J.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. Direct oxidative carbon−carbon bond formation using the “cation pool” method. 1. Generation of iminium cation pools and their reaction with carbon nucleophiles. J. Am. Chem. Soc. 1999, 121, 9546-9.

32. Shimizu, A.; Takeda, K.; Mishima, S.; et al. Generation, characterization, and reactions of thionium ions based on the indirect cation pool method. Bull. Chem. Soc. Jpn. 2016, 89, 61-6.

33. Suga, S.; Suzuki, S.; Yamamoto, A.; Yoshida, J. Electrooxidative generation and accumulation of alkoxycarbenium ions and their reactions with carbon nucleophiles. J. Am. Chem. Soc. 2000, 122, 10244-5.

34. Suga, S.; Yamada, D.; Yoshida, J. Cationic three-component coupling involving an optically active enamine derivative. from time integration to space integration of reactions. Chem. Lett. 2010, 39, 404-6.

35. Sezer, N.; Bayhan, S.; Fesli, U.; Sanfilippo, A. A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis. Mater. Sci. Energy. Technol. 2025, 8, 44-65.

36. Xing, J.; Zeng, Z.; Best, W.; et al. Long-term durability test of highly efficient membrane electrode assemblies for anion exchange membrane seawater electrolyzers. J. Power. Sources. 2023, 558, 232564.

37. Brachi, M.; El Housseini, W.; Beaver, K.; et al. Advanced electroanalysis for electrosynthesis. ACS. Org. Inorg. Au. 2024, 4, 141-87.

38. Kyriacou, D. Modern electroorganic chemistry. Springer Berlin Heidelberg; 1994.

39. Sharma, S. Electro-organic reactions: direct and indirect electrolysis. Orient. J. Chem. 2024, 40, 321-32.

40. Stuart, D. R.; Fagnou, K. The catalytic cross-coupling of unactivated arenes. Science 2007, 316, 1172-5.

41. Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Oxidative cross-coupling of arenes induced by single-electron transfer leading to biaryls by use of organoiodine(III) oxidants. Angew. Chem. Int. Ed. Engl. 2008, 47, 1301-4.

42. Morofuji, T.; Shimizu, A.; Yoshida, J. Metal- and chemical-oxidant-free C-H/C-H cross-coupling of aromatic compounds: the use of radical-cation pools. Angew. Chem. Int. Ed. Engl. 2012, 51, 7259-62.

43. Fritz, H. P.; Ecker, P. Elektrochemische synthesen, XVIII: Reaktionen des Naphthalinradikalkations mit Nucleophilen. Chem. Ber. 1981, 114, 3643-54.

44. Chupakhin, O. N.; Charushin, V. N. Recent advances in the field of nucleophilic aromatic substitution of hydrogen. Tetrahedron. Lett. 2016, 57, 2665-72.

45. Gallardo, I.; Guirado, G. Electrochemical C–H functionalization of arenes and heteroarenes. In: Charushin V, Chupakhin O, editers. Metal free C–H functionalization of aromatics. Topics in Heterocyclic Chemistry. Springer, Cham; 2013. pp. 241-75.

46. Chupakhin, O. N.; Shchepochkin, A. V.; Charushin, V. N. Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C–C coupling reactions. Green. Chem. 2017, 19, 2931-5.

47. Sun, G. Q.; Yu, P.; Zhang, W.; et al. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 2023, 615, 67-72.

48. Zhong, G.; Huang, Y.; He, L. Regioselectivity of N-heteroarene electrocarboxylations: divided vs. undivided cell. Chem. Synth. 2023, 3, 18.

49. Langlois, B. R.; Laurent, E.; Roidot, N. Trifluoromethylation of aromatic compounds with sodium trifluoromethanesulfinate under oxidative conditions. Tetrahedron. Lett. 1991, 32, 7525-8.

50. Ji, Y.; Brueckl, T.; Baxter, R. D.; et al. Innate C-H trifluoromethylation of heterocycles. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411-5.

51. O’Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Radical C-H functionalization of heteroarenes under electrochemical control. Angew. Chem. Int. Ed. Engl. 2014, 53, 11868-71.

52. Tommasino, J. B.; Brondex, A.; Médebielle, M.; Thomalla, M.; Langlois, B. R.; Billard, T. Trifluoromethylation reactions with potassium trifluoromethanesulfinate under electrochemical oxidation. Synlett 2002, 10, 1697-9.

53. Lu, M. C.; Shao, H. L.; Liu, T.; You, Q. D.; Jiang, Z. Y. Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur. J. Med. Chem. 2020, 207, 112734.

54. Xu, F.; Jia, Y.; Wen, Q.; et al. Synthesis and biological evaluation of N-(4-hydroxy-3-mercaptonaphthalen-1-yl)amides as inhibitors of angiogenesis and tumor growth. Eur. J. Med. Chem. 2013, 64, 377-88.

55. Xu, F.; Xu, H.; Wang, X.; et al. Discovery of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamide derivatives as novel protein kinase and angiogenesis inhibitors for the treatment of cancer: synthesis and biological evaluation. Part III. Bioorg. Med. Chem. 2014, 22, 1487-95.

56. Röhrig, U. F.; Awad, L.; Grosdidier, A.; et al. Rational design of indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem. 2010, 53, 1172-89.

57. Cee, V. J.; Cheng, A. C.; Romero, K.; et al. Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase. Bioorg. Med. Chem. Lett. 2009, 19, 424-7.

58. Kise, N.; Manto, T.; Sakurai, T. Electroreductive coupling of phthalimides with α,β-unsaturated carbonyl compounds and subsequent acid-catalyzed rearrangement to 4-aminonaphthalen-1-ols: density functional theory study of the acid-catalyzed rearrangement of ketene silyl acetals. J. Org. Chem. 2021, 86, 18232-46.

59. Kise, N.; Isemoto, S.; Sakurai, T. Electroreductive coupling of phthalimides with alpha,beta-unsaturated esters: unusual rearrangement of resulting silyl ketene acetals. Org. Lett. 2009, 11, 4902-5.

60. Amines: synthesis, properties and applications By S. A. Lawrence. Cambridge University Press: Cambridge. 2004. 371 + x pp. £100/$180. ISBN 0-521-78284-8. Org. Process. Res. Dev. 2005, 9, 1016.

61. Wang, S.; Hanna, D.; Sugamori, K. S.; Grant, D. M. Primary aromatic amines and cancer: novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol. Ther. 2019, 200, 179-89.

62. Wienhöfer, G.; Sorribes, I.; Boddien, A.; et al. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875-9.

63. Morofuji, T.; Shimizu, A.; Yoshida, J. Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylpyridinium ions. J. Am. Chem. Soc. 2013, 135, 5000-3.

64. Brotzel, F.; Kempf, B.; Singer, T.; Zipse, H.; Mayr, H. Nucleophilicities and carbon basicities of pyridines. Chemistry 2007, 13, 336-45.

65. Li, Y.; Asaoka, S.; Yamagishi, T.; Iyoda, T. Electrochemical synthesis of pyridinium-conjugated assembly based on nucleophilic substitution of pyrene/perylene π-radical cation. Electrochemistry 2004, 72, 171-4.

66. Sharma, P. C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D. P. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme. Inhib. Med. Chem. 2013, 28, 240-66.

67. Yeh, V.; Iyengar, R. Oxazoles. Comprehensive heterocyclic chemistry III. Elsevier; 2008. pp. 487-543.

68. Morofuji, T.; Shimizu, A.; Yoshida, J. Electrochemical intramolecular C-H amination: synthesis of benzoxazoles and benzothiazoles. Chemistry 2015, 21, 3211-4.

69. Zhang, G.; Liu, C.; Yi, H.; et al. External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic C-H thiolation for constructing C-S bonds. J. Am. Chem. Soc. 2015, 137, 9273-80.

70. Guru, M. M.; Ali, M. A.; Punniyamurthy, T. Copper(II)-catalyzed conversion of bisaryloxime ethers to 2-arylbenzoxazoles via C-H functionalization/C-N/C-O bonds formation. Org. Lett. 2011, 13, 1194-7.

71. Wesenberg, L. J.; Herold, S.; Shimizu, A.; Yoshida, J. I.; Waldvogel, S. R. New approach to 1,4-benzoxazin-3-ones by electrochemical C-H amination. Chemistry 2017, 23, 12096-9.

72. Brahma, K.; Das, B.; Chowdhury, C. A palladium-catalyzed facile and general method for the stereoselective synthesis of (E)-3-arylidene-3,4-dihydro-2H-1,4-benzoxazines and their naphthoxazine analogues. Tetrahedron 2014, 70, 5863-71.

73. Kononov, A. I.; Strekalova, S. O.; Morozov, V. I.; et al. Replacing sulfuric acid with water in electrochemical metal-free mild aromatic C–H amidation: a direct route to N-phenylamides. Org. Chem. Front. 2024, 11, 5820-30.

74. Fu, Y.; Zhang, L.; Sun, M.; et al. Direct electrochemical ritter-type amination of electron-deficient arenes. Eur. J. Org. Chem. 2023, 26, e202300553.

75. Moragas, T.; Correa, A.; Martin, R. Metal-catalyzed reductive coupling reactions of organic halides with carbonyl-type compounds. Chemistry 2014, 20, 8242-58.

76. Cheng, L. J.; Mankad, N. P. Copper-catalyzed carbonylative coupling of alkyl halides. Acc. Chem. Res. 2021, 54, 2261-74.

77. Knappke, C. E.; von Wangelin, A. J. 35 years of palladium-catalyzed cross-coupling with Grignard reagents: how far have we come? Chem. Soc. Rev. 2011, 40, 4948-62.

78. Dong, C. P.; Nakamura, K.; Taniguchi, T.; et al. Synthesis of aryl iodides from arylhydrazines and iodine. ACS. Omega. 2018, 3, 9814-21.

79. Ilangovan, A.; Satish, G. Direct amidation of 2’-aminoacetophenones using I2-TBHP: a unimolecular domino approach toward isatin and iodoisatin. J. Org. Chem. 2014, 79, 4984-91.

80. Dahiya, A.; Sahoo, A. K.; Chakraborty, N.; Das, B.; Patel, B. K. Updates on hypervalent-iodine reagents: metal-free functionalisation of alkenes, alkynes and heterocycles. Org. Biomol. Chem. 2022, 20, 2005-27.

81. Sano, K.; Kimura, N.; Kochi, T.; Kakiuchi, F. Palladium-catalyzed C−H iodination of N-(8-quinolinyl)benzamide derivatives under electrochemical and non-electrochemical conditions. Asian. J. Org. Chem. 2018, 7, 1311-4.

82. Möckel, R.; Hille, J.; Winterling, E.; Weidemüller, S.; Faber, T. M.; Hilt, G. Electrochemical synthesis of aryl iodides by anodic iododesilylation. Angew. Chem. Int. Ed. Engl. 2018, 57, 442-5.

83. Weissman, S. A.; Anderson, N. G. Design of experiments (DoE) and process optimization. a review of recent publications. Org. Process. Res. Dev. 2015, 19, 1605-33.

84. Murray, P. M.; Bellany, F.; Benhamou, L.; Bučar, D. K.; Tabor, A. B.; Sheppard, T. D. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 2016, 14, 2373-84.

85. Gensch, T.; Glorius, F. Synthetic chemistry. The straight dope on the scope of chemical reactions. Science 2016, 352, 294-5.

86. Kataoka, K.; Hagiwara, Y.; Midorikawa, K.; Suga, S.; Yoshida, J. Practical electrochemical iodination of aromatic compounds. Org. Process. Res. Dev. 2008, 12, 1130-6.

87. Midorikawa, K.; Suga, S.; Yoshida, J. Selective monoiodination of aromatic compounds with electrochemically generated I+ using micromixing. Chem. Commun. 2006, 3794-6.

88. Yan, L.; Lei, H.; Yang, P.; Zhang, W. Electrochemically generated iodine cations from a glassy carbon electrode for highly selective iodination of anisole. Trans. Tianjin. Univ. 2022, 28, 433-9.

89. Shirakawa, E.; Hayashi, Y.; Itoh, K.; et al. Cross-coupling of aryl Grignard reagents with aryl iodides and bromides through SRN1 pathway. Angew. Chem. Int. Ed. Engl. 2012, 51, 218-21.

90. Schilz, M.; Plenio, H. A guide to Sonogashira cross-coupling reactions: the influence of substituents in aryl bromides, acetylenes, and phosphines. J. Org. Chem. 2012, 77, 2798-807.

91. Yang, Q. L.; Wang, X. Y.; Wang, T. L.; et al. Palladium-catalyzed electrochemical C-H bromination using NH4Br as the brominating reagent. Org. Lett. 2019, 21, 2645-9.

92. Zhang, P.; Sheng, X.; Chen, X.; et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem. Int. Ed. Engl. 2019, 58, 9155-9.

93. Sbei, N.; Hardwick, T.; Ahmed, N. Green chemistry: electrochemical organic transformations via paired electrolysis. ACS. Sustainable. Chem. Eng. 2021, 9, 6148-69.

94. Chen, H.; Shen, C.; Dong, K. Parallel paired photoelectrochemical bromination of alkylarenes with electrochemical pinacol coupling. J. Org. Chem. 2024, 89, 2550-5.

95. Fry, A. J.; Reed, R. G. Electrochemical reduction of stereoisomeric geminal dihalonorbornanes. J. Am. Chem. Soc. 1972, 94, 8475-84.

96. Ikeda, S.; Tsukamoto, G.; Nishiguchi, I.; Hirashima, T. A novel synthetic method for penicillanic acid derivatives by electroreduction. Chem. Pharm. Bull. 1988, 36, 1976-81.

97. Kargin, Y. M.; Gritsenko, E. I.; Yanilkin, V. V.; et al. Electrochemical reduction of 1,1-dihalo-2,2-disubstituted cyclopropanes. Russ. Chem. Bull. 1992, 41, 1572-9.

98. Walborsky, H. M.; Hamdouchi, C. The nature of electron transfer from metal surfaces to the carbon-halogen bond. J. Am. Chem. Soc. 1993, 115, 6406-8.

99. Webb, J. L.; Mann, C. K.; Walborsky, H. M. Cyclopropanes. XXVI. Electrolytic reduction of optically active 1-halo-1-methyl-2,2-diphenylcyclopropanes. J. Am. Chem. Soc. 1970, 92, 2042-51.

100. Jaouannet, S.; Hazard, R.; Tallec, A. Electroreduction of optically active 1-bromo 1-carbomethoxy-2,2-diphenylcyclopropane: Factors influencing stereoselectivity. J. Electroanal. Chem. 1980, 111, 397-400.

101. Gütz, C.; Bänziger, M.; Bucher, C.; Galvão, T. R.; Waldvogel, S. R. Development and scale-up of the electrochemical dehalogenation for the synthesis of a key intermediate for NS5A inhibitors. Org. Process. Res. Dev. 2015, 19, 1428-33.

102. Fensterbank, L.; Goddard, J.; Malacria, M. 10.07 - C–C bond formation (Part 1) by addition reactions: through carbometallation catalyzed by group 8-11 metals. In: Comprehensive organometallic chemistry III. Elsevier; 2007. pp. 299-368.

103. Littke, A. F.; Fu, G. C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem. Int. Ed. 2002, 41, 4176-211.

104. Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. Palladium-catalyzed ortho-selective C-H chlorination of benzamide derivatives under anodic oxidation conditions. J. Org. Chem. 2017, 82, 8716-24.

105. Ashikari, Y.; Nokami, T.; Yoshida, J. Integrated electrochemical-chemical oxidation mediated by alkoxysulfonium ions. J. Am. Chem. Soc. 2011, 133, 11840-3.

106. Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. Can one predict changes from SN1 to SN2 mechanisms? J. Am. Chem. Soc. 2009, 131, 11392-401.

107. Adhami, W.; Richel, A.; Len, C. A review of recent advances in the production of furfural in batch system. Mol. Catal. 2023, 545, 113178.

108. Werpy, T.; Petersen, G. Top value added chemicals from biomass: Volume I - Results of screening for potential candidates from sugars and synthesis gas. 2004. https://www.nrel.gov/docs/fy04osti/35523.pdf. (accessed on 24 Mar 2025)

109. Cao, Y.; Knijff, J.; Delparish, A.; d’Angelo, M. F. N.; Noёl, T. A divergent paired electrochemical process for the conversion of furfural using a divided-cell flow microreactor. ChemSusChem 2021, 14, 590-4.

110. Wu, H.; Song, J.; Liu, H.; et al. An electrocatalytic route for transformation of biomass-derived furfural into 5-hydroxy-2(5H)-furanone. Chem. Sci. 2019, 10, 4692-8.

111. Cao, Y.; Noël, T. Efficient electrocatalytic reduction of furfural to furfuryl alcohol in a microchannel flow reactor. Org. Process. Res. Dev. 2019, 23, 403-8.

112. Wu, Y.; Liu, C.; Wang, C.; Lu, S.; Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew. Chem. Int. Ed. Engl. 2020, 59, 21170-5.

113. Kakiuchi, F.; Kochi, T. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen bond cleavage. Synthesis 2008, 2008, 3013-39.

114. Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F. Palladium-catalyzed regioselective homocoupling of arenes using anodic oxidation: formal electrolysis of aromatic carbon–hydrogen bonds. Organometallics 2014, 33, 6704-7.

115. Hull, K. L.; Lanni, E. L.; Sanford, M. S. Highly regioselective catalytic oxidative coupling reactions: synthetic and mechanistic investigations. J. Am. Chem. Soc. 2006, 128, 14047-9.

116. Zhu, Y.; Dong, W.; Tang, W. Palladium-catalyzed cross-couplings in the synthesis of agrochemicals. Adv. Agrochem. 2022, 1, 125-38.

117. Ma, C.; Zhao, C. Q.; Li, Y. Q.; et al. Palladium-catalyzed C-H activation/C-C cross-coupling reactions via electrochemistry. Chem. Commun. 2017, 53, 12189-92.

118. Chen, X.; Goodhue, C. E.; Yu, J. Q. Palladium-catalyzed alkylation of sp2 and sp3 C-H bonds with methylboroxine and alkylboronic acids: two distinct C-H activation pathways. J. Am. Chem. Soc. 2006, 128, 12634-5.

119. Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc. Chem. Res. 2012, 45, 788-802.

120. Li, Y. Q.; Yang, Q. L.; Fang, P.; Mei, T. S.; Zhang, D. Palladium-catalyzed C(sp2)-H acetoxylation via electrochemical oxidation. Org. Lett. 2017, 19, 2905-8.

121. Dick, A. R.; Hull, K. L.; Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C-H bonds. J. Am. Chem. Soc. 2004, 126, 2300-1.

122. Li, L. J.; Jiang, Y. Y.; Lam, C. M.; Zeng, C. C.; Hu, L. M.; Little, R. D. Aromatic C-H bond functionalization induced by electrochemically in situ generated tris(p-bromophenyl)aminium radical cation: cationic chain reactions of electron-rich aromatics with enamides. J. Org. Chem. 2015, 80, 11021-30.

123. See, Y. Y.; Herrmann, A. T.; Aihara, Y.; Baran, P. S. Scalable C-H oxidation with copper: synthesis of polyoxypregnanes. J. Am. Chem. Soc. 2015, 137, 13776-9.

124. Yang, Q. L.; Li, Y. Q.; Ma, C.; Fang, P.; Zhang, X. J.; Mei, T. S. Palladium-catalyzed C(sp3)-H oxygenation via electrochemical oxidation. J. Am. Chem. Soc. 2017, 139, 3293-8.

125. Robinson, S. G.; Mack, J. B. C.; Alektiar, S. N.; Du Bois, J.; Sigman, M. S. Electrochemical Ruthenium-catalyzed C-H hydroxylation of amine derivatives in aqueous acid. Org. Lett. 2020, 22, 7060-3.

126. Mack, J. B. C.; Gipson, J. D.; Du Bois, J.; Sigman, M. S. Ruthenium-catalyzed C-H hydroxylation in aqueous acid enables selective functionalization of amine derivatives. J. Am. Chem. Soc. 2017, 139, 9503-6.

127. Rebsdat, S.; Mayer, D. Ethylene Oxide. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; 2001. https://www.ugr.es/~tep028/pqi/descargas/Industria%20quimica%20organica/tema_5/oxido_etileno_a10_117.pdf. (accessed on 24 Mar 2025).

128. Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S. N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C-H functionalization. J. Am. Chem. Soc. 2018, 140, 22-5.

129. Xiang, H.; He, J.; Qian, W.; et al. Electroreductively induced radicals for organic synthesis. Molecules 2023, 28, 857.

130. Xu, H.; Yu, B.; Zhang, H.; et al. Reductive cleavage of inert aryl C-O bonds to produce arenes. Chem. Commun. 2015, 51, 12212-5.

131. Chernowsky, C. P.; Chmiel, A. F.; Wickens, Z. K. Electrochemical activation of diverse conventional photoredox catalysts induces potent photoreductant activity. Angew. Chem. Int. Ed. Engl. 2021, 60, 21418-25.

132. Fokin, I.; Siewert, I. Chemoselective electrochemical hydrogenation of ketones and aldehydes with a well-defined base-metal catalyst. Chemistry 2020, 26, 14137-43.

133. Hoque, M. A.; Gerken, J. B.; Stahl, S. S. Synthetic dioxygenase reactivity by pairing electrochemical oxygen reduction and water oxidation. Science 2024, 383, 173-8.

134. Adachi, T.; Kitazumi, Y.; Shirai, O.; Kano, K. Recent progress in applications of enzymatic bioelectrocatalysis. Catalysts 2020, 10, 1413.

135. Adachi, T.; Kitazumi, Y.; Shirai, O.; Kano, K. Direct electron transfer-type bioelectrocatalysis of redox enzymes at nanostructured electrodes. Catalysts 2020, 10, 236.

136. Francke, R.; Májek, M. Mediated electron transfer in electrosynthesis: concepts, applications, and recent influences from photoredox catalysis. In: Inagi S, editor. Sustainable and functional redox chemistry. The Royal Society of Chemistry; 2022. pp. 119-53.

137. Shi, L.; Dong, H.; Reguera, G.; et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651-62.

138. Dong, H.; Cheng, J.; Li, H.; Yue, L.; Xia, R.; Zhou, J. Electron transfer from Geobacter sulfurreducens to mixed methanogens improved methane production with feedstock gases of H2 and CO2. Bioresour. Technol. 2022, 347, 126680.

139. Freguia, S.; Virdis, B.; Harnisch, F.; Keller, J. Bioelectrochemical systems: microbial versus enzymatic catalysis. Electrochim. Acta. 2012, 82, 165-74.

140. Radhika, D.; Shivakumar, A.; Kasai, D.; Koutavarapu, R.; Peera, S. Microbial electrolysis cell as a diverse technology: overview of prospective applications, advancements, and challenges. Energies 2022, 15, 2611.

141. Bensaid, S.; Ruggeri, B.; Saracco, G. Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives. Energies 2015, 8, 399-429.

142. Hassan, R. Y. A.; Febbraio, F.; Andreescu, S. Microbial electrochemical systems: principles, construction and biosensing applications. Sensors 2021, 21, 1279.

143. Wu, R.; Ma, C.; Zhu, Z. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Curr. Opin. Electrochem. 2020, 19, 1-7.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/