REFERENCES

1. Liu, B.; Oh, S. C.; Chen, H.; Liu, D. The effect of oxidation of ethane to oxygenates on Pt- and Zn-containing LTA zeolites with tunable selectivity. J. Energy. Chem. 2019, 30, 42-8.

2. Armstrong, R.; Hutchings, G.; Taylor, S. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 2016, 6, 71.

3. Hammond, C.; Conrad, S.; Hermans, I. Oxidative methane upgrading. ChemSusChem 2012, 5, 1668-86.

4. Golisz, S. R.; Brent, G. T.; Goddard, W. A.; Groves, J. T.; Periana, R. A. Chemistry in the center for catalytic hydrocarbon functionalization: an energy frontier research center. Catal. Lett. 2011, 141, 213-21.

5. Dinh, K. T.; Sullivan, M. M.; Serna, P.; Meyer, R. J.; Dincă, M.; Román-Leshkov, Y. Viewpoint on the partial oxidation of methane to methanol using Cu- and Fe-exchanged zeolites. ACS. Catal. 2018, 8, 8306-13.

6. Heyer, A. J.; Plessers, D.; Braun, A.; et al. Methane activation by a mononuclear copper active site in the zeolite mordenite: effect of metal nuclearity on reactivity. J. Am. Chem. Soc. 2022, 144, 19305-16.

7. Forde, M. M.; Armstrong, R. D.; Hammond, C.; et al. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. J. Am. Chem. Soc. 2013, 135, 11087-99.

8. Wang, C.; Zhang, J.; Qin, G.; et al. Direct conversion of syngas to ethanol within zeolite crystals. Chem 2020, 6, 646-57.

9. Wang, C.; Huang, Y.; Wang, L.; Xiao, F. Structure-performance interplay of rhodium-based catalysts for syngas conversion to ethanol. Mater. Chem. Front. 2022, 6, 663-79.

10. Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813-37.

11. Movasati, A.; Alavi, S. M.; Mazloom, G. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel 2019, 236, 1254-62.

12. Zhang, Q.; Yu, J.; Corma, A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv. Mater. 2020, 32, e2002927.

13. Taylor, S. H.; Hargreaves, J. S.; Hutchings, G. J.; Joyner, R. W.; Lembacher, C. W. The partial oxidation of methane to methanol: an approach to catalyst design. Catal. Today. 1998, 42, 217-24.

14. Ito, T.; Lunsford, J. H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature 1985, 314, 721-2.

15. Periana, R. A.; Taube, D. J.; Evitt, E. R.; et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 1993, 259, 340-3.

16. Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 1998, 280, 560-4.

17. Mironov, O. A.; Bischof, S. M.; Konnick, M. M.; et al. Using reduced catalysts for oxidation reactions: mechanistic studies of the “Periana-Catalytica” system for CH4 oxidation. J. Am. Chem. Soc. 2013, 135, 14644-58.

18. Baek, J.; Rungtaweevoranit, B.; Pei, X.; et al. Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 2018, 140, 18208-16.

19. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-511.

20. Ravi, M.; Ranocchiari, M.; van, B. J. A. The direct catalytic oxidation of methane to methanol-A critical assessment. Angew. Chem. Int. Ed. Engl. 2017, 56, 16464-83.

21. Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van, B. J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523-7.

22. Olivos-Suarez, A. I.; Szécsényi, À.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; Gascon, J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS. Catal. 2016, 6, 2965-81.

23. Wu, L.; Fan, W.; Wang, X.; et al. Methane oxidation over the zeolites-based catalysts. Catalysts 2023, 13, 604.

24. Database of zeolite structures. http://www.iza-structure.org/databases/ (accessed 2025-02-10).

25. Zhang, Q.; Gao, S.; Yu, J. Metal sites in zeolites: synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 6039-106.

26. Li, Y.; Yu, J. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 2014, 114, 7268-316.

27. Zhang, Q.; Mayoral, A.; Terasaki, O.; et al. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening. J. Am. Chem. Soc. 2019, 141, 3772-6.

28. Del Campo, P.; Martínez, C.; Corma, A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem. Soc. Rev. 2021, 50, 8511-95.

29. Qi, G.; Davies, T. E.; Nasrallah, A.; et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45-54.

30. Lewis, R. J.; Bara-Estaun, A.; Agarwal, N.; Freakley, S. J.; Morgan, D. J.; Hutchings, G. J. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catal. Lett. 2019, 149, 3066-75.

31. Jin, Z.; Wang, L.; Zuidema, E.; et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193-7.

32. Cao, J.; Qi, G.; Yao, B.; et al. Partially bonded aluminum site on the external surface of post-treated Au/ZSM-5 enhances methane oxidation to oxygenates. ACS. Catal. 2024, 14, 1797-807.

33. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.

34. Yuan, J.; Zhang, W.; Li, X.; Yang, J. A high performance catalyst for methane conversion to methanol: graphene supported single atom Co. Chem. Commun. 2018, 54, 2284-7.

35. Lou, Y.; Cai, Y.; Hu, W.; et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS. Catal. 2020, 10, 6094-101.

36. Lou, Y.; Ma, J.; Hu, W.; et al. Low-temperature methane combustion over Pd/H-ZSM-5: active Pd sites with specific electronic properties modulated by acidic sites of H-ZSM-5. ACS. Catal. 2016, 6, 8127-39.

37. Cui, X.; Li, H.; Wang, Y.; et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902-10.

38. Shan, J.; Li, M.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605-8.

39. Huang, W.; Zhang, S.; Tang, Y.; et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. Int. Ed. Engl. 2016, 55, 13441-5.

40. Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694-9.

41. Shen, Q.; Cao, C.; Huang, R.; et al. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem. Int. Ed. Engl. 2020, 59, 1216-9.

42. Gesser, H. D.; Hunter, N. R.; Prakash, C. B. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 1985, 85, 235-44.

43. Mahyuddin, M. H.; Shiota, Y.; Yoshizawa, K. Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catal. Sci. Technol. 2019, 9, 1744-68.

44. Kulkarni, A. R.; Zhao, Z.; Siahrostami, S.; Nørskov, J. K.; Studt, F. Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catal. Sci. Technol. 2018, 8, 114-23.

45. Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Homogeneous functionalization of methane. Chem. Rev. 2017, 117, 8521-73.

46. Schwach, P.; Pan, X.; Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 2017, 117, 8497-520.

47. Zakaria, Z.; Kamarudin, S. Direct conversion technologies of methane to methanol: an overview. Renew. Sustain. Energy. Rev. 2016, 65, 250-61.

48. Panov, G. I.; Uriarte, A. K.; Rodkin, M. A.; Sobolev, V. I. Generation of active oxygen species on solid surfaces. opportunity for novel oxidation technologies over zeolites. Catal. Today. 1998, 41, 365-85.

49. Knops-Gerrits, P.; Goddard, W. Methane partial oxidation in iron zeolites: theory versus experiment. J. Mol. Catal. A. Chem. 2001, 166, 135-45.

50. Wood, B. Methanol formation on Fe/Al-MFI via the oxidation of methane by nitrous oxide. J. Catal. 2004, 225, 300-6.

51. Dubkov, K.; Sobolev, V.; Talsi, E.; et al. Kinetic isotope effects and mechanism of biomimetic oxidation of methane and benzene on FeZSM-5 zeolite. J. Mol. Catal. A. Chem. 1997, 123, 155-61.

52. Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 2005, 127, 1394-5.

53. Beznis, N. V.; van, L. A. N.; Weckhuysen, B. M.; Bitter, J. H. Oxidation of methane to methanol and formaldehyde over Co–ZSM-5 molecular sieves: tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Micropor. Mesopor. Mat. 2011, 138, 176-83.

54. Bozbag, S. E.; Alayon, E. M. C.; Pecháček, J.; Nachtegaal, M.; Ranocchiari, M.; van, B. J. A. Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques. Catal. Sci. Technol. 2016, 6, 5011-22.

55. Tomkins, P.; Ranocchiari, M.; van, B. J. A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 2017, 50, 418-25.

56. Mlekodaj, K.; Lemishka, M.; Kornas, A.; et al. Evolution of active oxygen species originating from O2 cleavage over Fe-FER for application in methane oxidation. ACS. Catal. 2023, 13, 3345-55.

57. Beznis, N. V.; Weckhuysen, B. M.; Bitter, J. H. Partial oxidation of methane over Co-ZSM-5: tuning the oxygenate selectivity by altering the preparation route. Catal. Lett. 2010, 136, 52-6.

58. Shan, J.; Huang, W.; Nguyen, L.; et al. Conversion of methane to methanol with a bent mono(μ-oxo)dinickel anchored on the internal surfaces of micropores. Langmuir 2014, 30, 8558-69.

59. Xu, J.; Zheng, A.; Wang, X.; et al. Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem. Sci. 2012, 3, 2932.

60. Hammond, C.; Dimitratos, N.; Lopez-Sanchez, J. A.; et al. Aqueous-phase methane oxidation over Fe-MFI zeolites; promotion through isomorphous framework substitution. ACS. Catal. 2013, 3, 1835-44.

61. Sobolev, V.; Dubkov, K.; Panna, O.; Panov, G. Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today. 1995, 24, 251-2.

62. Lipscomb, J. D. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 1994, 48, 371-99.

63. Chan, S. I.; Chen, K. H.; Yu, S. S.; Chen, C. L.; Kuo, S. S. Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 2004, 43, 4421-30.

64. Lieberman, R. L.; Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005, 434, 177-82.

65. Lieberman, R. L.; Shrestha, D. B.; Doan, P. E.; Hoffman, B. M.; Stemmler, T. L.; Rosenzweig, A. C. Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3820-5.

66. Yoshizawa, K.; Shiota, Y. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 2006, 128, 9873-81.

67. Yoshizawa, K. Nonradical mechanism for methane hydroxylation by iron-oxo complexes. Acc. Chem. Res. 2006, 39, 375-82.

68. Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; et al. Copper active sites in biology. Chem. Rev. 2014, 114, 3659-853.

69. Pannov, G.; Sobolev, V.; Kharitonov, A. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed. J. Mol. Catal. 1990, 61, 85-97.

70. Yoshizawa, K.; Shiota, Y.; Yumura, T.; Yamabe, T. Direct methane−methanol and benzene−phenol conversions on Fe−ZSM-5 zeolite:  theoretical predictions on the reaction pathways and energetics. J. Phys. Chem. B. 2000, 104, 734-40.

71. Groothaert, M. H.; van, B. J. A.; Battiston, A. A.; Weckhuysen, B. M.; Schoonheydt, R. A. Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-vis-near-IR, and kinetic study. J. Am. Chem. Soc. 2003, 125, 7629-40.

72. Smeets, P. J.; Hadt, R. G.; Woertink, J. S.; et al. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. J. Am. Chem. Soc. 2010, 132, 14736-8.

73. Tsai, M. L.; Hadt, R. G.; Vanelderen, P.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation. J. Am. Chem. Soc. 2014, 136, 3522-9.

74. Beznis, N. V.; Weckhuysen, B. M.; Bitter, J. H. Cu-ZSM-5 zeolites for the formation of methanol from methane and oxygen: probing the active sites and spectator species. Catal. Lett. 2010, 138, 14-22.

75. Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18908-13.

76. Forde, M. M.; Armstrong, R. D.; Mcvicker, R.; et al. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chem. Sci. 2014, 5, 3603-16.

77. Hammond, C.; Forde, M. M.; Ab, R. M. H.; et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. Engl. 2012, 51, 5129-33.

78. Fang, Z.; Murayama, H.; Zhao, Q.; et al. Selective mild oxidation of methane to methanol or formic acid on Fe–MOR catalysts. Catal. Sci. Technol. 2019, 9, 6946-56.

79. Yu, T.; Su, Y.; Wang, A.; Weckhuysen, B. M.; Luo, W. Efficient synthesis of monomeric Fe species in zeolite ZSM-5 for the low-temperature oxidation of methane. ChemCatChem 2021, 13, 2766-70.

80. Kim, M. S.; Park, K. H.; Cho, S. J.; Park, E. D. Partial oxidation of methane with hydrogen peroxide over Fe-ZSM-5 catalyst. Catal. Today. 2021, 376, 113-8.

81. Cheng, Q.; Li, G.; Yao, X.; et al. Maximizing active Fe species in ZSM-5 zeolite using organic-template-free synthesis for efficient selective methane oxidation. J. Am. Chem. Soc. 2023, 145, 5888-98.

82. Zhang, Q.; Li, J.; He, G.; et al. Regulating mono-/binuclear Fe species in framework Al-rich zeolites for efficient low-temperature alkane oxidation. CCS. Chem.2024.

83. Shahami, M.; Shantz, D. F. Zeolite acidity strongly influences hydrogen peroxide activation and oxygenate selectivity in the partial oxidation of methane over M,Fe-MFI (M: Ga, Al, B) zeolites. Catal. Sci. Technol. 2019, 9, 2945-51.

84. Oda, A.; Aono, K.; Murata, N.; et al. Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency. Catal. Sci. Technol. 2022, 12, 542-50.

85. Yu, T.; Li, Z.; Lin, L.; et al. Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5. ACS. Catal. 2021, 11, 6684-91.

86. Kim, M. S.; Yang, G. S.; Park, E. D. Effects of Cu species on liquid-phase partial oxidation of methane with H2O2 over Cu-Fe/ZSM-5 catalysts. Catalysts 2022, 12, 1224.

87. Göltl, F.; Michel, C.; Andrikopoulos, P. C.; et al. Computationally exploring confinement effects in the methane-to-methanol conversion over iron-oxo centers in zeolites. ACS. Catal. 2016, 6, 8404-9.

88. Mahyuddin, M. H.; Staykov, A.; Shiota, Y.; Miyanishi, M.; Yoshizawa, K. Roles of zeolite confinement and Cu–O–Cu angle on the direct conversion of methane to methanol by [Cu2(μ-O)]2+ -exchanged AEI, CHA, AFX, and MFI zeolites. ACS. Catal. 2017, 7, 3741-51.

89. Haw, J. F.; Song, W.; Marcus, D. M.; Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 2003, 36, 317-26.

90. Snyder, B. E. R.; Bols, M. L.; Rhoda, H. M.; et al. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 12124-9.

91. Snyder, B. E. R.; Bols, M. L.; Rhoda, H. M.; et al. Cage effects control the mechanism of methane hydroxylation in zeolites. Science 2021, 373, 327-31.

92. Zhu, K.; Liang, S.; Cui, X.; et al. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites. Nano. Energy. 2021, 82, 105718.

93. Zheng, J.; Ye, J.; Ortuño, M. A.; et al. Selective methane oxidation to methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-1000 metal-organic framework. J. Am. Chem. Soc. 2019, 141, 9292-304.

94. Liu, C.; Mou, C.; Yu, S. S.; Chan, S. I. Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy. Environ. Sci. 2016, 9, 1361-74.

95. Hammond, C.; Dimitratos, N.; Jenkins, R. L.; et al. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS. Catal. 2013, 3, 689-99.

96. Szécsényi, Á.; Li, G.; Gascon, J.; Pidko, E. A. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst. ACS. Catal. 2018, 8, 7961-72.

97. Kalamaras, C.; Palomas, D.; Bos, R.; Horton, A.; Crimmin, M.; Hellgardt, K. Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: the effect of Si/Al molar ratio. Catal. Lett. 2016, 146, 483-92.

98. Yu, T.; Li, Z.; Jones, W.; et al. Identifying key mononuclear Fe species for low-temperature methane oxidation. Chem. Sci. 2021, 12, 3152-60.

99. Zhang, Q.; Li, J.; Li, L.; Yu, J. Zeolite-based materials for greenhouse gas capture and conversion. Sci. China. Chem.2024.

100. Jia, J.; Sun, Q.; Wen, B.; Chen, L. X.; Sachtler, W. M. H. Identification of highly active iron sites in N2O-activated Fe/MFI. Catal. Lett. 2002, 82, 7-11.

101. Chow, Y. K.; Dummer, N. F.; Carter, J. H.; et al. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catal. Sci. Technol. 2018, 8, 154-63.

102. Xiao, P.; Nakamura, K.; Lu, Y.; et al. One-pot synthesized Fe-AEI zeolite catalysts contribute to direct oxidation of methane. ACS. Catal. 2023, 13, 16168-78.

103. Xiao, P.; Wang, L.; Toyoda, H.; et al. Revealing active sites and reaction pathways in direct oxidation of methane over Fe-containing CHA zeolites affected by the Al arrangement. J. Am. Chem. Soc. 2024, 146, 31969-81.

104. Zhu, L.; Xu, Q.; Liu, B.; et al. Ozone-assisted low-temperature oxidation of methane and ethane. P. Combust. Inst. 2023, 39, 375-84.

105. Ipek, B.; Lobo, R. F. Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant. Chem. Commun. 2016, 52, 13401-4.

106. Tsuchimura, Y.; Yoshida, H.; Machida, M.; Nishimura, S.; Takahashi, K.; Ohyama, J. Investigation of the active-site structure of Cu-CHA catalysts for the direct oxidation of methane to methanol using in situ UV-vis spectroscopy. Energy. Fuels. 2023, 37, 9411-8.

107. Bols, M. L.; Devos, J.; Rhoda, H. M.; et al. Selective formation of α-Fe(II) sites on Fe-zeolites through one-pot synthesis. J. Am. Chem. Soc. 2021, 143, 16243-55.

108. Plessers, D.; Heyer, A. J.; Rhoda, H. M.; et al. Tuning copper active site composition in Cu-MOR through Co-cation modification for methane activation. ACS. Catal. 2023, 13, 1906-15.

109. Jeong, Y. R.; Jung, H.; Kang, J.; Han, J. W.; Park, E. D. Continuous synthesis of methanol from methane and steam over copper-mordenite. ACS. Catal. 2021, 11, 1065-70.

110. Xiao, P.; Wang, Y.; Lu, Y.; et al. Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol. Appl. Catal. B. Environ. 2023, 325, 122395.

111. Artsiusheuski, M. A.; van, B. J. A.; Sushkevich, V. L. Structure of selective and nonselective dicopper (II) sites in CuMFI for methane oxidation to methanol. ACS. Catal. 2022, 12, 15626-37.

112. Xiao, P.; Wang, Y.; Nakamura, K.; et al. Highly effective Cu/AEI zeolite catalysts contribute to continuous conversion of methane to methanol. ACS. Catal. 2023, 13, 11057-68.

113. Brezicki, G.; Kammert, J. D.; Gunnoe, T. B.; Paolucci, C.; Davis, R. J. Insights into the speciation of Cu in the Cu-H-mordenite catalyst for the oxidation of methane to methanol. ACS. Catal. 2019, 9, 5308-19.

114. Kucherov, A. V.; Hubbard, C. P.; Kucherova, T. N.; Shelef, M. Stabilization of the ethane oxidation catalytic activity of Cu-ZSM-5. Appl. Catal. B. Environ. 1996, 7, 285-98.

115. Vanelderen, P.; Hadt, R. G.; Smeets, P. J.; Solomon, E. I.; Schoonheydt, R. A.; Sels, B. F. Cu-ZSM-5: a biomimetic inorganic model for methane oxidation. J. Catal. 2011, 284, 157-64.

116. Alayon, E. M.; Nachtegaal, M.; Ranocchiari, M.; van, B. J. A. Catalytic conversion of methane to methanol using Cu-zeolites. Chimia 2012, 66, 668-74.

117. Dinh, K. T.; Sullivan, M. M.; Narsimhan, K.; et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 2019, 141, 11641-50.

118. Narsimhan, K.; Iyoki, K.; Dinh, K.; Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS. Cent. Sci. 2016, 2, 424-9.

119. Sushkevich, V. L.; van, B. J. A. Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catal. Sci. Technol. 2018, 8, 4141-50.

120. Smeets, P. J.; Groothaert, M. H.; Schoonheydt, R. A. Cu based zeolites: a UV-vis study of the active site in the selective methane oxidation at low temperatures. Catal. Today. 2005, 110, 303-9.

121. Artsiusheuski, M. A.; Safonova, O.; Palagin, D.; van, B. J. A.; Sushkevich, V. L. Structural evolution of copper-oxo sites in zeolites upon the reaction with methane investigated by means of Cu K-edge X-ray absorption spectroscopy. J. Phys. Chem. C. 2023, 127, 9603-15.

122. Lee, I.; Lee, M. S.; Tao, L.; et al. Activity of Cu-Al-oxo extra-framework clusters for selective methane oxidation on Cu-exchanged zeolites. JACS. Au. 2021, 1, 1412-21.

123. Khramenkova, E. V.; Medvedev, M. G.; Li, G.; Pidko, E. A. Unraveling the nature of extraframework catalytic ensembles in zeolites: flexibility and dynamics of the copper-oxo trimers in mordenite. J. Phys. Chem. Lett. 2021, 12, 10906-13.

124. Xiao, P.; Wang, Y.; Wang, L.; et al. Understanding the effect of spatially separated Cu and acid sites in zeolite catalysts on oxidation of methane. Nat. Commun. 2024, 15, 2718.

125. Wijerathne, A.; Sawyer, A.; Daya, R.; Paolucci, C. Competition between mononuclear and binuclear copper sites across different zeolite topologies. JACS. Au. 2024, 4, 197-215.

126. Wang, Y.; Han, J.; Chen, M.; et al. Low-silica Cu-CHA zeolite enriched with Al pairs transcribed from silicoaluminophosphate seed: synthesis and ammonia selective catalytic reduction performance. Angew. Chem. Int. Ed. Engl. 2023, 62, e202306174.

127. Brezicki, G.; Zheng, J.; Paolucci, C.; Schlögl, R.; Davis, R. J. Effect of the Co-cation on Cu speciation in Cu-exchanged mordenite and ZSM-5 catalysts for the oxidation of methane to methanol. ACS. Catal. 2021, 11, 4973-87.

128. Gabrienko, A. A.; Yashnik, S. A.; Kolganov, A. A.; et al. Methane activation on H-ZSM-5 zeolite with low copper loading. the nature of active sites and intermediates identified with the combination of spectroscopic methods. Inorg. Chem. 2020, 59, 2037-50.

129. Ohyama, J.; Tsuchimura, Y.; Hirayama, A.; et al. Relationships among the catalytic performance, redox activity, and structure of Cu-CHA catalysts for the direct oxidation of methane to methanol investigated using in situ XAFS and UV-vis spectroscopies. ACS. Catal. 2022, 12, 2454-62.

130. Göltl, F.; Bhandari, S.; Lebrón-Rodríguez, E. A.; et al. Identifying hydroxylated copper dimers in SSZ-13 via UV-vis-NIR spectroscopy. Catal. Sci. Technol. 2022, 12, 2744-8.

131. Li, H.; Paolucci, C.; Khurana, I.; et al. Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13. Chem. Sci. 2019, 10, 2373-84.

132. Rhoda, H. M.; Plessers, D.; Heyer, A. J.; et al. Spectroscopic definition of a highly reactive site in Cu-CHA for selective methane oxidation: tuning a mono-μ-oxo dicopper(II) active site for reactivity. J. Am. Chem. Soc. 2021, 143, 7531-40.

133. Zhang, Y.; Zhang, J.; Wang, H.; et al. Selective catalytic reduction of NOx with NH3 over Cu/SSZ-13: elucidating dynamics of Cu active sites with in situ UV-vis spectroscopy and DFT calculations. J. Phys. Chem. C. 2022, 126, 8720-33.

134. Tang, X.; Wang, L.; Yang, B.; et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B. Environ. 2021, 285, 119827.

135. Heyer, A. J.; Plessers, D.; Ma, J.; et al. Magnetic exchange coupling in zeolite copper dimers and its contribution to methane activation. J. Am. Chem. Soc. 2024, 146, 6061-71.

136. Li, G.; Vassilev, P.; Sanchez-Sanchez, M.; Lercher, J. A.; Hensen, E. J.; Pidko, E. A. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J. Catal. 2016, 338, 305-12.

137. Armstrong, R. D.; Peneau, V.; Ritterskamp, N.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. Chemphyschem 2018, 19, 469-78.

138. Grundner, S.; Markovits, M. A.; Li, G.; et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 2015, 6, 7546.

139. Yuan, Q.; Deng, W.; Zhang, Q.; Wang, Y. Osmium-catalyzed selective oxidations of methane and ethane with hydrogen peroxide in aqueous medium. Adv. Synth. Catal. 2007, 349, 1199-209.

140. Kulkarni, A. R.; Zhao, Z.; Siahrostami, S.; Nørskov, J. K.; Studt, F. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites. ACS. Catal. 2016, 6, 6531-6.

141. Sushkevich, V. L.; Artsiusheuski, M.; Klose, D.; Jeschke, G.; van, B. J. A. Identification of kinetic and spectroscopic signatures of copper sites for direct oxidation of methane to methanol. Angew. Chem. Int. Ed. Engl. 2021, 60, 15944-53.

142. Mahyuddin, M. H.; Staykov, A.; Shiota, Y.; Yoshizawa, K. Direct conversion of methane to methanol by metal-exchanged ZSM-5 zeolite (metal = Fe, Co, Ni, Cu). ACS. Catal. 2016, 6, 8321-31.

143. Pierella, L. B.; Saux, C.; Caglieri, S. C.; Bertorello, H. R.; Bercoff, P. G. Catalytic activity and magnetic properties of Co–ZSM-5 zeolites prepared by different methods. Appl. Catal. A. Gen. 2008, 347, 55-61.

144. Mahyuddin, M. H.; Tanaka, S.; Kitagawa, R.; et al. Distinct behaviors of Cu- and Ni-ZSM-5 zeolites toward the post-activation reactions of methane. J. Phys. Chem. C. 2021, 125, 19333-44.

145. Mahyuddin, M. H.; Yoshizawa, K. DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite. Catal. Sci. Technol. 2018, 8, 5875-85.

146. Xiao, P.; Wang, Y.; Lu, Y.; et al. Direct oxidation of methane to methanol over transition-metal-free ferrierite zeolite catalysts. J. Am. Chem. Soc. 2024, 146, 10014-22.

147. Wang, L.; Zhang, S.; Zhu, Y.; et al. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS. Catal. 2013, 3, 1011-9.

148. Nguyen, L.; Zhang, S.; Wang, L.; et al. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS. Catal. 2016, 6, 840-50.

149. Zhang, S.; Nguyen, L.; Liang, J. X.; et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

150. Bai, S.; Liu, F.; Huang, B.; et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 2020, 11, 954.

151. Zhu, J.; Osuga, R.; Ishikawa, R.; et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation. Angew. Chem. Int. Ed. Engl. 2020, 59, 19669-74.

152. Tao, F. F.; Shan, J. J.; Nguyen, L.; et al. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2015, 6, 7798.

153. Guo, X.; Fang, G.; Li, G.; et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616-9.

154. Bai, S.; Yao, Q.; Xu, Y.; Cao, K.; Huang, X. Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol. Nano. Energy. 2020, 71, 104566.

155. Ab Rahim, M. H.; Forde, M. M.; Hammond, C.; et al. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Top. Catal. 2013, 56, 1843-57.

156. Bai, S.; Xu, Y.; Wang, P.; Shao, Q.; Huang, X. Activating and converting CH4 to CH3OH via the CuPdO2/CuO nanointerface. ACS. Catal. 2019, 9, 6938-44.

157. Plauck, A.; Stangland, E. E.; Dumesic, J. A.; Mavrikakis, M. Active sites and mechanisms for H2O2 decomposition over Pd catalysts. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E1973-82.

158. Flaherty, D. W. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: current understanding, outstanding questions, and research needs. ACS. Catal. 2018, 8, 1520-7.

159. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223-7.

160. Williams, C.; Carter, J. H.; Dummer, N. F.; et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS. Catal. 2018, 8, 2567-76.

161. He, Y.; Liang, J.; Imai, Y.; et al. Highly selective synthesis of methanol from methane over carbon materials supported Pd-Au nanoparticles under mild conditions. Catal. Today. 2020, 352, 104-10.

162. Freakley, S. J.; Kochius, S.; van, M. J.; et al. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nat. Commun. 2019, 10, 4178.

163. Crombie, C. M.; Lewis, R. J.; Taylor, R. L.; et al. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS. Catal. 2021, 11, 2701-14.

164. Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem. Int. Ed. Engl. 2013, 52, 1280-4.

165. Wu, B.; Lin, T.; Huang, M.; et al. Tandem catalysis for selective oxidation of methane to oxygenates using oxygen over PdCu/zeolite. Angew. Chem. Int. Ed. Engl. 2022, 61, e202204116.

166. Cheng, Q.; Yao, X.; Li, G.; et al. Atomically dispersed iron-copper dual-metal sites synergistically boost carbonylation of methane. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411048.

167. Moteki, T.; Tominaga, N.; Ogura, M. Mechanism investigation and product selectivity control on CO-assisted direct conversion of methane into C1 and C2 oxygenates catalyzed by zeolite-supported Rh. Appl. Catal. B. Environ. 2022, 300, 120742.

168. Narsimhan, K.; Michaelis, V. K.; Mathies, G.; Gunther, W. R.; Griffin, R. G.; Román-Leshkov, Y. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. J. Am. Chem. Soc. 2015, 137, 1825-32.

169. Wang, X.; Qi, G.; Xu, J.; Li, B.; Wang, C.; Deng, F. NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angew. Chem. Int. Ed. Engl. 2012, 51, 3850-3.

170. Blasco, T.; Boronat, M.; Concepción, P.; Corma, A.; Law, D.; Vidal-Moya, J. A. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center. Angew. Chem. Int. Ed. Engl. 2007, 46, 3938-41.

171. Boronat, M.; Martínez-Sánchez, C.; Law, D.; Corma, A. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. J. Am. Chem. Soc. 2008, 130, 16316-23.

172. Moteki, T.; Tominaga, N.; Ogura, M. CO-assisted direct methane conversion into C1 and C2 oxygenates over ZSM-5 supported transition and platinum group metal catalysts using oxygen as an oxidant. ChemCatChem 2020, 12, 2957-61.

173. Wang, C.; Sun, Y.; Wang, L.; et al. Oxidative carbonylation of methane to acetic acid on an Fe-modified ZSM-5 zeolite. Appl. Catal. B. Environ. 2023, 329, 122549.

174. Tang, Y.; Li, Y.; Fung, V.; et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 2018, 9, 1231.

175. Cao, J.; Lewis, R. J.; Qi, G.; et al. Methane conversion to methanol using Au/ZSM-5 is promoted by carbon. ACS. Catal. 2023, 13, 7199-209.

176. Wu, B.; Yin, H.; Ma, X.; et al. Highly selective synthesis of acetic acid from hydroxyl-mediated oxidation of methane at low temperatures. Angew. Chem. Int. Ed. Engl. 2025, 64, e202412995.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/