REFERENCES

1. Busca, G. Silica-alumina catalytic materials: a critical review. Catal. Today. 2020, 357, 621-9.

2. Wang, Z.; Jiang, Y.; Baiker, A.; Huang, J. Pentacoordinated aluminum species: new frontier for tailoring acidity-enhanced silica-alumina catalysts. Acc. Chem. Res. 2020, 53, 2648-58.

3. Yao, N.; Xiong, G.; He, M.; Sheng, S.; Yang, W.; Bao, X. A novel method to synthesize amorphous silica−alumina materials with mesoporous distribution without using templates and pore-regulating agents. Chem. Mater. 2002, 14, 122-9.

4. Keller, T.; Arras, J.; Haus, M.; et al. Synthesis-property-performance relationships of amorphous silica-alumina catalysts for the production of methylenedianiline and higher homologues. J. Catal. 2016, 344, 757-67.

5. Huang, J.; van, V. N.; Jiang, Y.; Hunger, M.; Baiker, A. Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew. Chem. Int. Ed. Engl. 2010, 49, 7776-81.

6. Wang, Z.; Buechel, R.; Jiang, Y.; et al. Engineering the distinct structure interface of subnano-alumina domains on silica for acidic amorphous silica-alumina toward biorefining. JACS. Au. 2021, 1, 262-71.

7. Mouat, A. R.; George, C.; Kobayashi, T.; et al. Highly dispersed SiOx/Al2O3 catalysts illuminate the reactivity of isolated silanol sites. Angew. Chem. Int. Ed. Engl. 2015, 54, 13346-51.

8. Trombetta, M.; Busca, G.; Rossini, S.; et al. FT-IR studies on light olefin skeletal isomerization catalysis. J. Catal. 1998, 179, 581-96.

9. Chizallet, C.; Raybaud, P. Pseudo-bridging silanols as versatile Brønsted acid sites of amorphous aluminosilicate surfaces. Angew. Chem. Int. Ed. Engl. 2009, 48, 2891-3.

10. Chizallet, C. Toward the atomic scale simulation of intricate acidic aluminosilicate catalysts. ACS. Catal. 2020, 10, 5579-601.

11. Crépeau, G.; Montouillout, V.; Vimont, A.; Mariey, L.; Cseri, T.; Maugé, F. Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study. J. Phys. Chem. B. 2006, 110, 15172-85.

12. Wang, Z.; Jiang, Y.; Lafon, O.; et al. Brønsted acid sites based on penta-coordinated aluminum species. Nat. Commun. 2016, 7, 13820.

13. Perras, F. A.; Wang, Z.; Kobayashi, T.; Baiker, A.; Huang, J.; Pruski, M. Shedding light on the atomic-scale structure of amorphous silica-alumina and its Brønsted acid sites. Phys. Chem. Chem. Phys. 2019, 21, 19529-37.

14. Xu, B.; Sievers, C.; Lercher, J. A.; et al. Strong Brønsted acidity in amorphous silica−aluminas. J. Phys. Chem. C. 2007, 111, 12075-9.

15. Poduval, D. G.; van, J. A. R.; Rigutto, M. S.; Hensen, E. J. Brønsted acid sites of zeolitic strength in amorphous silica-alumina. Chem. Commun. 2010, 46, 3466-8.

16. Wang, Z.; Chen, K.; Jiang, Y.; et al. Revealing Brønsted acidic bridging SiOHAl groups on amorphous silica-alumina by ultrahigh field solid-state NMR. J. Phys. Chem. Lett. 2021, 12, 11563-72.

17. Salvia, W. S.; Zhao, T. Y.; Chatterjee, P.; Huang, W.; Perras, F. A. Are the Brønsted acid sites in amorphous silica-alumina bridging? Chem. Commun. 2023, 59, 13962-5.

18. Jiang, Y.; Huang, J.; Dai, W.; Hunger, M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid. State. Nucl. Magn. Reson. 2011, 39, 116-41.

19. Wang, Z.; Jiang, Y.; Baiker, A.; Hunger, M.; Huang, J. Promoting aromatic C-H activation through reactive Brønsted acid-base pairs on penta-coordinated Al-enriched amorphous silica-alumina. J. Phys. Chem. Lett. 2022, 13, 486-91.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/