REFERENCES
1. Renzone, G. D.; Landi, E.; Mugnaini, M.; Parri, L.; Peruzzi, G.; Pozzebon, A. Assessment of LoRaWAN transmission systems under temperature and humidity, gas, and vibration aging effects within IIoT contexts. IEEE. Trans. Instrum. Meas. 2022, 71, 1-11.
2. Filipovic, L.; Selberherr, S. Application of two-dimensional materials towards CMOS-integrated gas sensors. Nanomaterials 2022, 12, 3651.
3. Lombardi, A.; Grassi, M.; Malcovati, P.; et al. A CMOS integrated interface circuit for metal-oxide gas sensors. Sens. Actuators. B. 2009, 142, 82-9.
4. Malcovati, P.; Grassi, M.; Baschirotto, A. Towards high-dynamic range CMOS integrated interface circuits for gas sensors. Sens. Actuators. B. 2013, 179, 301-12.
5. Jiang, G.; Goledzinowski, M.; Comeau, F. J. E.; et al. Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv. Funct. Mater. 2016, 26, 1729-36.
6. Xie, S.; Lu, Y.; Zhang, S.; Wang, L.; Zhang, X. Electro-optical gas sensor based on a planar light-emitting electrochemical cell microarray. Small 2010, 6, 1897-9.
7. Zhao, H.; Fan, S.; Chen, Y.; et al. Oxygen plasma-treated graphene oxide surface functionalization for sensitivity enhancement of thin-film piezoelectric acoustic gas sensors. ACS. Appl. Mater. Interfaces. 2017, 9, 40774-81.
8. Kwon, B.; Bae, H.; Lee, H.; et al. Ultrasensitive N-channel graphene gas sensors by nondestructive molecular doping. ACS. Nano. 2022, 16, 2176-87.
9. Zhang, C.; Xu, K.; Liu, K.; Xu, J.; Zheng, Z. Metal oxide resistive sensors for carbon dioxide detection. Coord. Chem. Rev. 2022, 472, 214758.
10. Majhi, S. M.; Mirzaei, A.; Kim, H. W.; Kim, S. S.; Kim, T. W. Recent advances in energy-saving chemiresistive gas sensors: a review. Nano. Energy. 2021, 79, 105369.
11. Degler, D.; Weimar, U.; Barsan, N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS. Sens. 2019, 4, 2228-49.
12. Kim, H.; Lee, J. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators. B. 2014, 192, 607-27.
13. Fang, X.; Zong, B.; Mao, S. Metal-organic framework-based sensors for environmental contaminant sensing. Nanomicro. Lett. 2018, 10, 64.
14. Hu, X.; Yu, J.; Gong, J.; Li, Q.; Li, G. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 2007, 19, 2324-9.
15. Xu, S.; Xu, Y.; Zhao, H.; Xu, R.; Lei, Y. Sensitive gas-sensing by creating adsorption active sites: coating an SnO2 layer on triangle arrays. ACS. Appl. Mater. Interfaces. 2018, 10, 29092-9.
16. Xu, S.; Zhao, H.; Xu, Y.; Xu, R.; Lei, Y. Carrier mobility-dominated gas sensing: a room-temperature gas-sensing mode for SnO2 nanorod array sensors. ACS. Appl. Mater. Interfaces. 2018, 10, 13895-902.
17. Jo, Y. M.; Jo, Y. K.; Lee, J. H.; Jang, H. W.; Hwang, I. S.; Yoo, D. J. MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 2023, 35, e2206842.
18. Xie, J.; Liu, X.; Jing, S.; Pang, C.; Liu, Q.; Zhang, J. Chemical and electronic modulation via atomic layer deposition of NiO on porous In2O3 films to boost NO2 detection. ACS. Appl. Mater. Interfaces. 2021, 13, 39621-32.
19. Fu, Q.; Han, J.; Wang, X.; et al. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, e1907818.
20. Wang, L.; Xu, D.; Jiang, L.; et al. Transition metal dichalcogenides for sensing and oncotherapy: status, challenges, and perspective. Adv. Funct. Mater. 2021, 31, 2004408.
21. Wang, L.; Liu, D.; Jiang, L.; et al. Advanced 2D–2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation. Nano. Energy. 2022, 98, 107192.
22. Wu, X.; Zhang, H.; Zhang, J.; Lou, X. W. D. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, e2008376.
23. Xiao, Y.; Xiong, C.; Chen, M. M.; Wang, S.; Fu, L.; Zhang, X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem. Soc. Rev. 2023, 52, 1215-72.
24. Zhao, B.; Shen, D.; Zhang, Z.; et al. 2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications. Adv. Funct. Mater. 2021, 31, 2105132.
25. Lee, E.; Yoon, Y. S.; Kim, D. J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS. Sens. 2018, 3, 2045-60.
26. Annanouch, F. E.; Alagh, A.; Umek, P.; Casanova-Chafer, J.; Bittencourt, C.; Llobet, E. Controlled growth of 3D assemblies of edge enriched multilayer MoS2 nanosheets for dually selective NH3 and NO2 gas sensors. J. Mater. Chem. C. 2022, 10, 11027-39.
27. Singh, S.; Sharma, S. Temperature dependent selective detection of ethanol and methanol using MoS2/TiO2 composite. Sens. Actuators. B. 2022, 350, 130798.
28. Tang, S. Y.; Yang, C. C.; Su, T. Y.; et al. Design of core-shell quantum dots-3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications. ACS. Nano. 2020, 14, 12668-78.
29. Zhou, Q.; Song, H.; Sun, T.; Zhang, L.; Lv, Y. Cataluminescence on 2D WS2 nanosheets surface for H2S sensing. Sens. Actuators. B. 2022, 353, 131111.
30. Zheng, W.; Liu, X.; Xie, J.; Lu, G.; Zhang, J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coord. Chem. Rev. 2021, 447, 214151.
31. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS. Nano. 2014, 8, 1102-20.
32. Prabhu, P.; Jose, V.; Lee, J. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter 2020, 2, 526-53.
33. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-50.
34. Wang, H.; Chen, J.; Lin, Y.; et al. Electronic modulation of non-van der Waals 2D electrocatalysts for efficient energy conversion. Adv. Mater. 2021, 33, 2008422.
35. Zhang, Y.; Yao, Y.; Sendeku, M. G.; et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, e1901694.
36. Huang, Y.; Pan, Y. H.; Yang, R.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.
37. Xing, L.; Li, X.; Wu, Z.; et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.
38. Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715-36.
39. Yue, Q.; Shao, Z.; Chang, S.; Li, J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale. Res. Lett. 2013, 8, 425.
40. Bui, V. Q.; Pham, T. T.; Le, D. A.; Thi, C. M.; Le, H. M. A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties. J. Phys. Condens. Matter. 2015, 27, 305005.
41. Wang, T.; Zhao, R.; Zhao, X.; An, Y.; Dai, X.; Xia, C. Tunable donor and acceptor impurity states in a WSe2 monolayer by adsorption of common gas molecules. RSC. Adv. 2016, 6, 82793-800.
42. Lin, L.; Feng, Z.; Dong, Z.; Hu, C.; Han, L.; Tao, H. DFT study on the adsorption of CO, NO2, SO2 and NH3 by Te vacancy and metal atom doped MoTe2 monolayers. Physica. E. 2023, 145, 115489.
43. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772-5.
44. Wang, X.; Wang, Y.; Tian, F.; et al. From the surface reaction control to gas-diffusion control: the synthesis of gierarchical porous SnO2 microspheres and their gas-sensing mechanism. J. Phys. Chem. C. 2015, 119, 15963-76.
45. Zhao, Y.; Chang, K.; Gu, Q.; et al. Noble metal-free 2D 1T-MoS2 edge sites boosting selective hydrogenation of maleic anhydride. ACS. Catal. 2022, 12, 8986-94.
46. Wang, Z.; Li, Q.; Xu, H.; et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano. Energy. 2018, 49, 634-43.
47. Xu, T.; Liu, Y.; Pei, Y.; et al. The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes. Sens. Actuators. B. 2018, 259, 789-96.
48. Duan, Y.; Feng, S.; Zhang, K.; Qiu, J.; Zhang, S. Vertical few-layer WSe2 nanosheets for NO2 sensing. ACS. Appl. Nano. Mater. 2021, 4, 12043-50.
49. Hu, B.; Wang, B.; Bai, Z.; et al. Regulating MoS2 edge site for photocatalytic nitrogen fixation: a theoretical and experimental study. Chem. Eng. J. 2022, 442, 136211.
50. Zhuang, M.; Xu, G.; Gan, L.; et al. Sub-5 nm edge-rich 1T’-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage. Nano. Energy. 2019, 58, 660-8.
51. Zavala-Sanchez, L.; Khalil, I.; Oliviero, L.; Paul, J.; Maugé, F. Structure and quantification of edge sites of WS2/Al2O3 catalysts coupling IR/CO spectroscopy and DFT calculations. ChemCatChem 2020, 12, 2066-76.
52. Kumar, A.; Sharma, N.; Gutal, A. P.; et al. Growth and NO2 gas sensing mechanisms of vertically aligned 2D SnS2 flakes by CVD: experimental and DFT studies. Sens. Actuators. B. 2022, 353, 131078.
53. Bisht, P.; Kumar, A.; Ghosh, A.; et al. Tailoring the vertical and planar growth of 2D WS2 thin films using pulsed laser deposition for enhanced gas sensing properties. ACS. Appl. Mater. Interfaces. 2022, 14, 36789-800.
54. Alagh, A.; Annanouch, F. E.; Sierra-Castillo, A.; Haye, E.; Colomer, J. F.; Llobet, E. Three-dimensional assemblies of edge-enriched WSe2 nanoflowers for selectively detecting ammonia or nitrogen dioxide. ACS. Appl. Mater. Interfaces. 2022, 14, 54946-60.
55. Zhou, Q.; Zhu, L.; Zheng, C.; Wang, J. Nanoporous functionalized WS2/MWCNTs nanocomposite for trimethylamine detection based on quartz crystal microbalance gas sensor. ACS. Appl. Mater. Interfaces. 2021, 13, 41339-50.
56. Xu, Y.; Xie, J.; Zhang, Y.; et al. Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J. Hazard. Mater. 2021, 411, 125120.
57. Alagh, A.; Annanouch, F. E.; Umek, P.; et al. CVD growth of self-assembled 2D and 1D WS2 nanomaterials for the ultrasensitive detection of NO2. Sens. Actuators. B. 2021, 326, 128813.
58. Liu, D.; Tang, Z.; Zhang, Z. Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets. Sens. Actuators. B. 2020, 303, 127114.
59. Li, Y.; Song, Z.; Li, Y.; et al. Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sens. Actuators. B. 2019, 282, 259-67.
60. Koo, W. T.; Cha, J. H.; Jung, J. W.; et al. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 2018, 28, 1802575.
61. Cho, S. Y.; Kim, S. J.; Lee, Y.; et al. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS. Nano. 2015, 9, 9314-21.
62. Cho, D.; Lee, G.; Lee, Y. L.; et al. Ultrathin copper monosulfide films for an optically semitransparent, highly selective ammonia chemosensor. ACS. Appl. Mater. Interfaces. 2024, 16, 60530-40.
63. Kim, Y. B.; Jung, S. H.; Kim, D. S.; et al. Progressive NO2 sensors with rapid alarm and persistent memory-type responses for wide-range sensing using antimony triselenide nanoflakes. Adv. Funct. Mater. 2021, 31, 2102439.
64. Hu, Z.; Liu, X.; Hernández-Martínez, P. L.; et al. Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat 2022, 4, e12290.
65. Choi, M. S.; Ali, N.; Ngo, T. D.; et al. Recent progress in 1D contacts for 2D-material-based devices. Adv. Mater. 2022, 34, 2202408.
66. Chung, Y.; Yang, C.; Lee, J.; Wu, G. H.; Wu, J. M. Coupling effect of piezo–flexocatalytic hydrogen evolution with hybrid 1T- and 2H-phase few-layered MoSe2 nanosheets. Adv. Energy. Mater. 2020, 10, 2002082.
67. Liu, L.; Wu, J.; Wu, L.; et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-14.
68. Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952-80.
69. Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-plane 2H-1T’ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.
70. Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-12.
71. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
72. Wang, L.; Liu, X.; Luo, J.; et al. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2017, 56, 7610-4.
73. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS. Nano. 2012, 6, 7311-7.
74. Gan, X.; Zhao, H.; Quan, X. Two-dimensional MoS2: a promising building block for biosensors. Biosens. Bioelectron. 2017, 89, 56-71.
75. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
76. Gao, G.; Jiao, Y.; Ma, F.; Jiao, Y.; Waclawik, E.; Du, A. Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T’ phase. J. Phys. Chem. C. 2015, 119, 13124-8.
77. Huang, H.; Cui, Y.; Li, Q.; et al. Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano. Energy. 2016, 26, 172-9.
78. Wang, D.; Zhang, X.; Bao, S.; Zhang, Z.; Fei, H.; Wu, Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A. 2017, 5, 2681-8.
79. Kappera, R.; Voiry, D.; Yalcin, S. E.; et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-34.
80. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-8.
81. Deng, Q.; Li, X.; Si, H.; et al. Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable MoxRe1-xS2 alloys. Adv. Funct. Mater. 2020, 30, 2003264.
82. Lai, Z.; Yao, Y.; Li, S.; et al. Salt-assisted 2H-to-1T’ phase transformation of transition metal dichalcogenides. Adv. Mater. 2022, 34, e2201194.
83. Yu, Y.; Nam, G. H.; He, Q.; et al. High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638-43.
84. He, H.; Zhang, H.; Huang, D.; et al. Harnessing plasma-assisted doping engineering to stabilize metallic phase MoSe2 for fast and durable sodium-ion storage. Adv. Mater. 2022, 34, e2200397.
85. Wang, S.; Zhang, D.; Li, B.; et al. Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy. Mater. 2018, 8, 1801345.
86. Duan, Y.; Zhang, S.; Yu, Y.; Qiu, J.; Feng, S. Facile microwave plasma driven 3D-WSe2 2H-1T phase modulation for improving NO2 gas sensing performance. Sens. Actuators. B. 2023, 387, 133822.
87. Duan, Y.; Sun, D.; Zhang, S.; Wang, S.; Qiu, J.; Feng, S. Multi-strategy coordination enables WSe2 to achieve high-performance real-world detection of NO2. Sens. Actuators. B. 2024, 403, 135183.
88. Chen, Y.; Lee, S.; Su, T.; Wu, S.; Chen, P.; Chueh, Y. Phase-modulated 3D-hierarchical 1T/2H WSe2 nanoscrews by a plasma-assisted selenization process as high performance NO gas sensors with a ppb-level detection limit. J. Mater. Chem. A. 2019, 7, 22314-22.
89. Zong, B.; Li, Q.; Chen, X.; et al. Highly enhanced gas sensing performance using a 1T/2H Heterophase MoS2 field-effect transistor at room temperature. ACS. Appl. Mater. Interfaces. 2020, 12, 50610-8.
90. Park, S.; Kim, C.; Park, S. O.; et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, e2001889.
91. Zhu, J.; Wang, Z.; Yu, H.; et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216-9.
92. Liu, F.; Zou, Y.; Tang, X.; et al. Phase engineering and alkali cation stabilization for 1T molybdenum dichalcogenides monolayers. Adv. Funct. Mater. 2022, 32, 2204601.
93. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-75.
94. Tan, Y.; Liu, P.; Chen, L.; et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023-8.
95. Liu, Y.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy. Mater. 2016, 6, 1600436.
96. Yuan, H.; Aljneibi, S. A. A. A.; Yuan, J.; et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 2019, 31, 1807161.
97. Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-33.
98. Jia, Y.; Jiang, K.; Wang, H.; Yao, X. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371-97.
99. Wang, X.; Wu, J.; Zhang, Y.; et al. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: from aggregated to atomic configuration. Adv. Mater. 2023, 35, e2206576.
100. Li, F.; Shi, C. NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory. Appl. Surf. Sci. 2018, 434, 294-306.
101. Ma, D.; Ma, B.; Lu, Z.; et al. Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer. Phys. Chem. Chem. Phys. 2017, 19, 26022-33.
102. Cui, Z.; Yang, K.; Shen, Y.; et al. Toxic gas molecules adsorbed on intrinsic and defective WS2: gas sensing and detection. Appl. Surf. Sci. 2023, 613, 155978.
103. Qin, Z.; Xu, K.; Yue, H.; et al. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuators. B. 2018, 262, 771-9.
104. Qin, Z.; Song, X.; Wang, J.; et al. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing. Appl. Surf. Sci. 2022, 573, 151535.
105. Mao, S.; Chang, J.; Pu, H.; et al. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872-904.
106. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478-598.
107. Minh, T. N.; Thai, D. L.; Hwang, B. U.; et al. High-performance schottky diode gas sensor based on the heterojunction of three-dimensional nanohybrids of reduced graphene oxide-vertical ZnO nanorods on an AlGaN/GaN layer. ACS. Appl. Mater. Interfaces. 2017, 9, 30722-32.
108. Jeong, S. Y.; Kim, J. S.; Lee, J. H. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 2020, 32, e2002075.
109. Ghosh, K.; Pumera, M. MXene and MoS3-x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small. Methods. 2021, 5, e2100451.
110. Thakkar, H.; Eastman, S.; Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. 3D-printed metal-organic framework monoliths for gas adsorption processes. ACS. Appl. Mater. Interfaces. 2017, 9, 35908-16.
111. Liu, C.; Duan, Z.; Zhang, B.; et al. Local Gaussian process regression with small sample data for temperature and humidity compensation of polyaniline-cerium dioxide NH3 sensor. Sens. Actuators. B. 2023, 378, 133113.