REFERENCES

1. Zhou W, Guo JK, Shen S, et al. Progress in photoelectrocatalytic reduction of carbon dioxide. Acta Phys Chim Sin 2020;36:1906048.

2. Tang B, Xiao FX. An overview of solar-driven photoelectrochemical CO2 Conversion to chemical fuels. ACS Catal 2022;12:9023-57.

3. Xu S, Shen Q, Zheng J, et al. Advances in biomimetic photoelectrocatalytic reduction of carbon dioxide (Adv. Sci. 31/2022). Adv Sci 2022;9:2270196.

4. Chen P, Zhang Y, Zhou Y, Dong F. Photoelectrocatalytic carbon dioxide reduction: fundamental, advances and challenges. Nano Mater Sci 2021;3:344-67.

5. Zhang N, Long R, Gao C, Xiong Y. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 2018;61:771-805.

6. Ochedi FO, Liu D, Yu J, Hussain A, Liu Y. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review. Environ Chem Lett 2021;19:941-67.

7. Kan M, Wang Q, Hao S, et al. System engineering enhances photoelectrochemical CO2 reduction. J Phys Chem C 2022;126:1689-700.

8. Chang X, Wang T, Yang P, Zhang G, Gong J. The development of cocatalysts for photoelectrochemical CO2 reduction. Adv Mater 2019;31:e1804710.

9. Dutta S, Patil R, Chongdar S, Bhaumik A. Dehydrogenase-functionalized interfaced materials in electroenzymatic and photoelectroenzymatic CO2 reduction. ACS Sustain Chem Eng 2022;10:6141-56.

10. Li Y, Li S, Huang H. Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction. Chem Eng J 2023;457:141179.

11. Liu L, Zhang Y, Huang H. Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction. Solar RRL 2021;5:2000430.

12. Brillas E, Serrà A, Garcia-segura S. Biomimicry designs for photoelectrochemical systems: Strategies to improve light delivery efficiency. Curr Opin Electrochem 2021;26:100660.

13. Devi P, Verma R, Singh JP. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: recent progress in the role of oxygen vacancies in catalyst design. J CO2 Util 2022;65:102211.

14. Putri LK, Ng BJ, Ong WJ, Chai SP, Mohamed AR. Toward excellence in photocathode engineering for photoelectrochemical CO2 reduction: design rationales and current progress. Adv Energy Mater 2022;12:2201093.

15. Li Y, Li S, Huang H. Defective photocathode: fundamentals, construction, and catalytic energy conversion. Adv Funct Mater 2023;33:2304925.

16. Pawar AU, Kim CW, Nguyen-le M, Kang YS. General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis. ACS Sustainable Chem Eng 2019;7:7431-55.

17. King AJ, Bui JC, Bell AT, Weber AZ. Establishing the role of operating potential and mass transfer in multicarbon product generation for photoelectrochemical CO2 reduction cells using a Cu catalyst. ACS Energy Lett 2022;7:2694-700.

18. Verma S, Yadav A. Emerging single-atom catalysts and nanomaterials for photoelectrochemical reduction of carbon dioxide to value-added products: a review of the current state-of-the-art and future perspectives. Energy Fuels 2023;37:5712-42.

19. Hiragond CB, Kim J, Kim H, Bae D, In S. Elemental-doped catalysts for photoelectrochemical CO2 conversion to solar fuels. Solar RRL 2024;8:2400022.

20. Bienkowski K, Solarska R, Trinh L, et al. Halide perovskites for photoelectrochemical water splitting and CO2 reduction: challenges and opportunities. ACS Catal 2024;14:6603-22.

21. Li CF, Guo RT, Zhang ZR, Wu T, Pan WG. Converting CO2 into value-added products by Cu2O-based catalysts: from photocatalysis, electrocatalysis to photoelectrocatalysis. Small 2023;19:e2207875.

22. Zhang W, Jin Z, Chen Z. Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Adv Sci 2022;9:e2105204.

23. Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc 2019;141:7646-59.

24. Zheng W, Yang X, Li Z, et al. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew Chem Int Ed Engl 2023;62:e202307283.

25. Han GH, Bang J, Park G, et al. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products. Small 2023;19:e2205765.

26. Otgonbayar Z, Yoon CM, Oh WC. Photoelectrocatalytic CO2 reduction with ternary nanocomposite of MXene (Ti3C2)-Cu2O-Fe3O4: comprehensive utilization of electrolyte and light-wavelength. Chem Eng J 2023;464:142716.

27. Landaeta E, Kadosh NI, Schultz ZD. Mechanistic study of plasmon-assisted in situ photoelectrochemical CO2 reduction to acetate with a Ag/Cu2O nanodendrite electrode. ACS Catal 2023;13:1638-48.

28. Liang H, Li M, Li Z, Xie W, Zhang T, Wang Q. Photoelectrochemical CO2 reduction with copper-based photocathodes. J CO2 Util 2024;79:102639.

29. Guo X, Wang C, Yang Z, Yang Y. Boosting C2+ production from photoelectrochemical CO2 reduction on gallium doped Cu2O. Chem Eng J 2023;471:144539.

30. Wang B, Yang F, Dong Y, et al. Cu@porphyrin-COFs nanorods for efficiently photoelectrocatalytic reduction of CO2. Chem Eng J 2020;396:125255.

31. Wang J, Guan Y, Yu X, et al. Photoelectrocatalytic reduction of CO2 to paraffin using p-n heterojunctions. iScience 2020;23:100768.

32. Cao H, Yu H, Lu Y, et al. Photoelectrocatalytic reduction of CO2 over CuBi2O4/TiO2-NTs under simulated solar irradiation. ChemistrySelect 2020;5:5137-45.

33. Lu Y, Cao H, Xu S, et al. CO2 photoelectroreduction with enhanced ethanol selectivity by high valence rhenium-doped copper oxide composite catalysts. J Colloid Interface Sci 2021;599:497-506.

34. Zhou S, Sun K, Huang J, et al. Accelerating electron-transfer and tuning product selectivity through surficial vacancy engineering on CZTS/CdS for photoelectrochemical CO2 reduction. Small 2021;17:e2100496.

35. de Souza MKR, Cardoso EDSF, Fortunato GV, et al. Combination of Cu-Pt-Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction. J Environ Chem Eng 2021;9:105803.

36. Nandal N, Prajapati PK, Abraham BM, Jain SL. CO2 to ethanol: a selective photoelectrochemical conversion using a ternary composite consisting of graphene oxide/copper oxide and a copper-based metal-organic framework. Electrochim Acta 2022;404:139612.

37. Merino-garcia I, Castro S, Irabien A, et al. Efficient photoelectrochemical conversion of CO2 to ethylene and methanol using a Cu cathode and TiO2 nanoparticles synthesized in supercritical medium as photoanode. J Environ Chem Eng 2022;10:107441.

38. Wang K, Liu Y, Wang Q, et al. Asymmetric Cu-N sites on copper oxide photocathode for photoelectrochemical CO2 reduction towards C2 products. Appl Catal B Environ 2022;316:121616.

39. Lu M, Jia D, Xue H, Tian J, Jiang T. 0D/1D CuFeO2/CuO nanowire heterojunction arrays for improved photoelectrocatalytic reduction of CO2 to ethanol. J Alloys Compd 2023;960:170626.

40. Kim C, King AJ, Aloni S, Toma FM, Weber AZ, Bell AT. Codesign of an integrated metal-insulator-semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene. Energy Environ Sci 2023;16:2968-76.

41. Cardoso J, Stulp S, de Souza M, et al. The effective role of ascorbic acid in the photoelectrocatalytic reduction of CO2 preconcentrated on TiO2 nanotubes modified by ZIF-8. J Electroanal Chem 2020;856:113384.

42. Bergamini L, Sangiorgi N, Gondolini A, et al. CsPbBr3/platinum and CsPbBr3/graphite hybrid photoelectrodes for carbon dioxide conversion to oxalic acid. Solar Energy 2023;254:213-22.

43. Zhang Y, Han B, Xu Y, et al. Artificial photosynthesis of alcohols by multi-functionalized semiconductor photocathodes. ChemSusChem 2017;10:1742-8.

44. Wang J, Han B, Nie R, et al. Photoelectrocatalytic reduction of CO2 to chemicals via ZnO@Nickel foam: controlling C-C coupling by ligand or morphology. Top Catal 2018;61:1563-73.

45. Han B, Wang J, Yan C, et al. The photoelectrocatalytic CO2 reduction on TiO2@ZnO heterojunction by tuning the conduction band potential. Electrochim Acta 2018;285:23-9.

46. Wang J, Wei Y, Yang B, Wang B, Chen J, Jing H. In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction. J Catal 2019;377:209-17.

47. Wang L, Wei Y, Fang R, et al. Photoelectrocatalytic CO2 reduction to ethanol via graphite-supported and functionalized TiO2 nanowires photocathode. J Photochem Photobiol A Chem 2020;391:112368.

48. Yu X, Wei Y, Chen Y, Wang J, Jing H. P-doped WO3 semiconductor with enhanced conduction band on highly efficient photoelectrocatalytic reduction of CO2. Chinese Sci Bull 2020;66:825-32.

49. Liu C, Xiao Y, Wan W, et al. Different behaviors on the external and inner surface of hollow CdS/VS-MoS2 heterojunctions in photoelectrocatalytic CO2 reduction via SH-assisted mechanism. Appl Catal B Environ 2023;325:122394.

50. Xu Y, Wang F, Lei S, et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem Eng J 2023;452:139392.

51. Wei Y, Duan R, Zhang Q, et al. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: nitrogen assisted active hydrogen mechanism. Chinese J Catal 2023;47:243-53.

52. Cao Y, Wei Y, Wan W, et al. Photoelectrochemical reduction of CO2 catalyzed by a 3D core-shell NiMoO4@ZnO heterojunction with bicentre at the (111) plane and thermal electron assistance. J Mater Chem A 2023;11:4230-7.

53. Wan W, Zhang Q, Wei Y, et al. p-n heterojunctions of Si@WO3 mimicking thylakoid for photoelectrocatalytic CO2 reduction to C2+ products - morphology control. Chem Eng J 2023;454:140122.

54. Kumaravel V, Bartlett J, Pillai SC. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett 2020;5:486-519.

55. Chu S, Rashid RT, Pan Y, Wang X, Zhang H, Xiao R. The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. J CO2 Util 2022;60:101993.

56. Jiang X, Chen R, Chen YX, Lu CZ. Proton exchange membrane fuel cells: application for value-added chemical productions. Chem Synth 2024;4:6.

57. Gao D, Wei P, Li H, Lin L, Wang G, Bao X. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys Chim Sin 2021;37:2009021.

58. Castro S, Albo J, Irabien A. Photoelectrochemical reactors for CO2 utilization. ACS Sustainable Chem Eng 2018;6:15877-94.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/