REFERENCES

1. Tozawa T, Jones JTA, Swamy SI, et al. Porous organic cages. Nat Mater 2009;8:973-8.

2. Mastalerz M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew Chem Int Ed Engl 2010;49:5042-53.

3. Hasell T, Cooper AI. Porous organic cages: soluble, modular and molecular pores. Nat Rev Mater 2016;1:16053.

4. Mastalerz M. Porous shape-persistent organic cage compounds of different size, geometry, and function. Acc Chem Res 2018;51:2411-22.

5. Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely covalent molecular cages and containers for guest encapsulation. Chem Rev 2022;122:13636-708.

6. Mukhopadhyay RD, Kim Y, Koo J, Kim K. Porphyrin boxes. Acc Chem Res 2018;51:2730-8.

7. Liu M, Zhang L, Little MA, et al. Barely porous organic cages for hydrogen isotope separation. Science 2019;366:613-20.

8. Acharyya K, Mukherjee PS. Organic imine cages: molecular marriage and applications. Angew Chem Int Ed Engl 2019;58:8640-53.

9. He A, Jiang Z, Wu Y, et al. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat Mater 2022;21:463-70.

10. Hu D, Zhang J, Liu M. Recent advances in the applications of porous organic cages. Chem Commun 2022;58:11333-46.

11. Yang X, Ullah Z, Stoddart JF, Yavuz CT. Porous organic cages. Chem Rev 2023;123:4602-34.

12. Drożdż W, Ciesielski A, Stefankiewicz AR. Dynamic cages-towards nanostructured smart materials. Angew Chem Int Ed Engl 2023;62:e202307552.

13. Mastalerz M. Permanent porous materials from discrete organic molecules-towards ultra-high surface areas. Chemistry 2012;18:10082-91.

14. Jiang S, Jones JTA, Hasell T, et al. Porous organic molecular solids by dynamic covalent scrambling. Nat Commun 2011;2:207.

15. Song Q, Jiang S, Hasell T, et al. Porous organic cage thin films and molecular-sieving membranes. Adv Mater 2016;28:2629-37.

16. McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 2006;35:675-83.

17. Tan L, Tan B. Correction: Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 2017;46:3481.

18. Lee JM, Cooper AI. Advances in conjugated microporous polymers. Chem Rev 2020;120:2171-214.

19. Wang XX, Song LN, Zheng LJ, et al. Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew Chem Int Ed Engl 2023;62:e202308837.

20. Zhang W, Chen L, Dai S, et al. Reconstructed covalent organic frameworks. Nature 2022;604:72-9.

21. Yang S, Lv H, Zhong H, Yuan D, Wang X, Wang R. Transformation of covalent organic frameworks from N-acylhydrazone to oxadiazole linkages for smooth electron transfer in photocatalysis. Angew Chem Int Ed Engl 2022;61:e202115655.

22. Chen Z, Wang J, Hao M, et al. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat Commun 2023;14:1106.

23. Hu F, Hu Z, Liu Y, et al. Aqueous sol-gel synthesis and shaping of covalent organic frameworks. J Am Chem Soc 2023;145:27718-27.

24. Huang N, Wang P, Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 2016;1:16068.

25. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341:1230444.

26. Howarth AJ, Liu Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 2016;1:15018.

27. Lan G, Fan Y, Shi W, You E, Veroneau SS, Lin W. Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis. Nat Catal 2022;5:1006-18.

28. Wang KY, Zhang J, Hsu YC, et al. Bioinspired framework catalysts: from enzyme immobilization to biomimetic catalysis. Chem Rev 2023;123:5347-420.

29. Lin RB, He Y, Li P, Wang H, Zhou W, Chen B. Multifunctional porous hydrogen-bonded organic framework materials. Chem Soc Rev 2019;48:1362-89.

30. Hisaki I, Suzuki Y, Gomez E, et al. Acid responsive hydrogen-bonded organic frameworks. J Am Chem Soc 2019;141:2111-21.

31. Yuan Z, Jiang X, Chen L, et al. Sticked-layer strategy to a flexible-robust hydrogen-bonded organic framework for efficient C2H2/CO2 separation. CCS Chem 2024;6:663-71.

32. Yin Q, Alexandrov EV, Si DH, et al. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew Chem Int Ed Engl 2022;61:e202115854.

33. Ma JX, Li J, Chen YF, et al. Cage based crystalline covalent organic frameworks. J Am Chem Soc 2019;141:3843-8.

34. Hasell T, Chong SY, Jelfs KE, Adams DJ, Cooper AI. Porous organic cage nanocrystals by solution mixing. J Am Chem Soc 2012;134:588-98.

35. Wang H, Jin Y, Sun N, Zhang W, Jiang J. Post-synthetic modification of porous organic cages. Chem Soc Rev 2021;50:8874-86.

36. Jin Y, Voss BA, Jin A, Long H, Noble RD, Zhang W. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J Am Chem Soc 2011;133:6650-8.

37. Bacskay GB, Reimers JR, Nordholm S. The mechanism of covalent bonding. J Chem Educ 1997;74:1494.

38. Holst JR, Trewin A, Cooper AI. Porous organic molecules. Nat Chem 2010;2:915-20.

39. Jin Y, Voss BA, Mccaffrey R, Baggett CT, Noble RD, Zhang W. Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs). Chem Sci 2012;3:874-7.

40. Wang Z, Ma H, Zhai TL, et al. Networked cages for enhanced CO2 capture and sensing. Adv Sci 2018;5:1800141.

41. Wang Z, Ou Q, Ma H, et al. Molecular engineering for organic cage frameworks with fixed pore size to tune their porous properties and improve CO2 capture. ACS Appl Polym Mater 2021;3:171-7.

42. Buyukcakir O, Seo Y, Coskun A. Thinking outside the cage: controlling the extrinsic porosity and gas uptake properties of shape-persistent molecular cages in nanoporous polymers. Chem Mater 2015;27:4149-55.

43. Zhai Z, Jiang C, Zhao N, et al. Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration. J Membrane Sci 2020;595:117505.

44. Jiang Z, Wang Y, Sheng M, et al. A highly permeable porous organic cage composite membrane for gas separation. J Mater Chem A 2023;11:6831-41.

45. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310:1166-70.

46. Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science 2017;355:eaal1585.

47. Qian C, Feng L, Teo WL, et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat Rev Chem 2022;6:881-98.

48. Wang S, Yang Y, Zhang Z. Designing and molding covalent organic frameworks for separation applications. Acc Mater Res 2023;4:953-67.

49. Baek K, Hwang I, Roy I, Shetty D, Kim K. Self-assembly of nanostructured materials through irreversible covalent bond formation. Acc Chem Res 2015;48:2221-9.

50. Zhu Q, Wang X, Clowes R, et al. 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J Am Chem Soc 2020;142:16842-8.

51. Ji C, Su K, Wang W, et al. Tunable cage-based three-dimensional covalent organic frameworks. CCS Chem 2022;4:3095-105.

52. Swamy SI, Bacsa J, Jones JTA, et al. A metal-organic framework with a covalently prefabricated porous organic linker. J Am Chem Soc 2010;132:12773-5.

53. Zhang L, Xiang L, Hang C, Liu W, Huang W, Pan Y. From discrete molecular cages to a network of cages exhibiting enhanced CO2 adsorption capacity. Angew Chem Int Ed Engl 2017;56:7787-91.

54. Hong S, Rohman MR, Jia J, et al. Porphyrin boxes: rationally designed porous organic cages. Angew Chem Int Ed Engl 2015;54:13241-4.

55. Benke BP, Aich P, Kim Y, et al. Iodide-selective synthetic ion channels based on shape-persistent organic cages. J Am Chem Soc 2017;139:7432-5.

56. Kim Y, Koo J, Hwang IC, et al. Rational design and construction of hierarchical superstructures using shape-persistent organic cages: porphyrin box-based metallosupramolecular assemblies. J Am Chem Soc 2018;140:14547-51.

57. Yang P, Jiang J, Ma JP, et al. Monolayer nanosheets exfoliated from cage-based cationic metal-organic frameworks. Inorg Chem 2022;61:1521-9.

58. Huang YG, Shiota Y, Wu MY, et al. Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. Nat Commun 2016;7:11564.

59. Zhang G, Li B, Zhou Y, et al. Processing supramolecular framework for free interconvertible liquid separation. Nat Commun 2020;11:425.

60. Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun JK. Hierarchically porous organic cages. Angew Chem Int Ed Engl 2021;60:12490-7.

61. Zhang SY, Kochovski Z, Lee HC, et al. Ionic organic cage-encapsulating phase-transferable metal clusters. Chem Sci 2019;10:1450-6.

62. Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry. Chem Commun 2016;52:6351-62.

63. Li P, Ryder MR, Stoddart JF. Hydrogen-bonded organic frameworks: a rising class of porous molecular materials. Acc Mater Res 2020;1:77-87.

64. Wang B, Lin RB, Zhang Z, Xiang S, Chen B. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J Am Chem Soc 2020;142:14399-416.

65. Yu D, Zhang H, Ren J, Qu X. Hydrogen-bonded organic frameworks: new horizons in biomedical applications. Chem Soc Rev 2023;52:7504-23.

66. Han B, Wang H, Wang C, et al. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J Am Chem Soc 2019;141:8737-40.

67. Zhu Q, Johal J, Widdowson DE, et al. Analogy powered by prediction and structural invariants: computationally led discovery of a mesoporous hydrogen-bonded organic cage crystal. J Am Chem Soc 2022;144:9893-901.

68. Zhu Q, Wei L, Zhao C, et al. Soft hydrogen-bonded organic frameworks constructed using a flexible organic cage hinge. J Am Chem Soc 2023;145:23352-60.

69. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Halogen bonding in supramolecular chemistry. Angew Chem Int Ed Engl 2008;47:6114-27.

70. Dumele O, Trapp N, Diederich F. Halogen bonding molecular capsules. Angew Chem Int Ed Engl 2015;54:12339-44.

71. Nieland E, Komisarek D, Hohloch S, et al. Supramolecular networks by imine halogen bonding. Chem Commun 2022;58:5233-6.

72. Tan L, Zhou JH, Sun JK, Yuan J. Electrostatically cooperative host-in-host of metal cluster $$ \subset $$ ionic organic cages in nanopores for enhanced catalysis. Nat Commun 2022;13:1471.

73. Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Mixed-matrix membranes. Angew Chem Int Ed Engl 2017;56:9292-310.

74. Chen T, Li Y, Wei Y, Zhang Y, Zhu J, Van der Bruggen B. Exploring the potential of porous organic cage membranes: recent advances and applications. Sep Purif Technol 2024;330:125440.

75. Evans JD, Huang DM, Hill MR, Sumby CJ, Thornton AW, Doonan CJ. Feasibility of mixed matrix membrane gas separations employing porous organic cages. J Phys Chem C 2014;118:1523-9.

76. Kong X, Liu J. An atomistic simulation study on POC/PIM mixed-matrix membranes for gas separation. J Phys Chem C 2019;123:15113-21.

77. Bushell AF, Budd PM, Attfield MP, et al. Nanoporous organic polymer/cage composite membranes. Angew Chem Int Ed Engl 2013;52:1253-6.

78. Zhu G, Zhang F, Rivera MP, et al. Molecularly mixed composite membranes for advanced separation processes. Angew Chem Int Ed Engl 2019;58:2638-43.

79. Mao H, Zhang S. Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation. J Colloid Interface Sci 2017;490:29-36.

80. Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev 2019;48:2783-828.

81. Li J, Ma Y, Mccarthy MC, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 2011;255:1791-823.

82. Mohammed N, Lian H, Islam MS, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem Eng J 2021;417:129237.

83. Zhang Q, Li H, Chen S, Duan J, Jin W. Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J Membrane Sci 2020;611:118288.

84. Zhou B, Li Q, Zhang Q, Duan J, Jin W. Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler. J Membrane Sci 2020;597:117772.

85. Luo D, He Y, Tian J, Sessler JL, Chi X. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. J Am Chem Soc 2022;144:113-7.

86. Cheng K, Li H, Li Z, Li P, Zhao Y. Linking nitrogen-rich organic cages into isoreticular covalent organic frameworks for enhancing iodine adsorption capability. ACS Mater Lett 2023;5:1546-55.

87. Cheng K, Li H, Wang JR, Li PZ, Zhao Y. From supramolecular organic cages to porous covalent organic frameworks for enhancing iodine adsorption capability by fully exposed nitrogen-rich sites. Small 2023;19:e2301998.

88. Zhao XJ, Liu SH, Sun JK. Hierarchically porous poly(ionic liquid) - organic cage composite membrane for efficient iodine capture. Chemistry 2022;28:e202201199.

89. Hao S, Jia Z, Wen J, et al. Progress in adsorptive membranes for separation - A review. Sep Purif Technol 2021;255:117772.

90. Xu T, Wu B, Hou L, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J Am Chem Soc 2022;144:10220-9.

91. Li M, Ma J, Pan B, Wang J. Cage-based covalent organic framework for the effective and efficient removal of malachite green from wastewater. ACS Appl Mater Interfaces 2022;14:57180-8.

92. Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol 2004;66:319-29.

93. Bhandari P, Mukherjee PS. Covalent organic cages in catalysis. ACS Catal 2023;13:6126-43.

94. Sun JK, Zhan WW, Akita T, Xu Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. J Am Chem Soc 2015;137:7063-6.

95. Yang X, Sun J, Kitta M, Pang H, Xu Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat Catal 2018;1:214-20.

96. Song Q, Xu D, David Wang W, et al. Ru clusters confined in Hydrogen-bonded organic frameworks for homogeneous catalytic hydrogenation of N-heterocyclic compounds with heterogeneous recyclability. J Catal 2022;406:19-27.

97. Zhu L, Yang X, Sun JK. Cooperative cage hybrids enabled by electrostatic marriage. Chem Commun 2023;59:6020-3.

98. Chen L, Chen Q, Wu M, Jiang F, Hong M. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks. Acc Chem Res 2015;48:201-10.

99. Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor-triggered mechanical actuation in polymer composite films based on crystalline organic cages. Angew Chem Int Ed Engl 2022;61:e202212596.

100. Han R, Wu P. Composite proton-exchange membrane with highly improved proton conductivity prepared by in situ crystallization of porous organic cage. ACS Appl Mater Interfaces 2018;10:18351-8.

101. Liu SH, Zhou JH, Wu C, Zhang P, Cao X, Sun JK. Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving. Nat Commun 2024;15:2478.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/