REFERENCES

1. Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal 2018;1:490-500.

2. Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stoukides M. An electrochemical Haber-Bosch process. Joule 2020;4:142-58.

3. Chang F, Gao W, Guo J, Chen P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv Mater 2021;33:e2005721.

4. Valera-Medina A, Xiao H, Owen-Jones M, David W, Bowen P. Ammonia for power. Prog Energ Combust 2018;69:63-102.

5. Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat Catal 2019;2:377-80.

6. Smith C, Hill AK, Torrente-murciano L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ Sci 2020;13:331-44.

7. Zhu W, Yao F, Wu Q, et al. Weakened d–p orbital hybridization in in situ reconstructed Ru/β-Co(OH)2 heterointerfaces for accelerated ammonia electrosynthesis from nitrates. Energy Environ Sci 2023;16:2483-93.

8. Ren Y, Yu C, Tan X, et al. Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives. Energy Environ Sci 2022;15:2776-805.

9. Macfarlane DR, Cherepanov PV, Choi J, et al. A roadmap to the ammonia economy. Joule 2020;4:1186-205.

10. Zhang F, Luo J, Chen J, et al. Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction. Angew Chem Int Ed Engl 2023;62:e202310383.

11. Wang J, Feng T, Chen J, et al. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021;86:106088.

12. Wu Z, Song Y, Liu Y, Luo W, Li W, Yang J. Electrocatalytic nitrate reduction: selectivity at the crossroads between ammonia and nitrogen. Chem Catal 2023;3:100786.

13. Zhu W, Zhang X, Yao F, et al. A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew Chem Int Ed Engl 2023;62:e202300390.

14. Wang Z, Liu S, Zhao X, et al. Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Mater Lett 2023;5:1018-26.

15. Sun N, Guo Y, Luo L, Cai X, Shen S, Zhang J. Facile synthesis of CuCo-CoO composite electrocatalyst for nitrate reduction to ammonia with high activity, selectivity and stability. Appl Surf Sci 2023;624:157118.

16. Bai Z, Li X, Ding L, Qu Y, Chang X. Artificial Cu-Ni catalyst towards highly efficient nitrate-to-ammonia conversion. Sci China Mater 2023;66:2329-38.

17. Yin H, Mao X, Bell S, Golberg D, Du A. Transition-metal-free, pure p-block alloy electrocatalysts for the highly efficient nitrate reduction to ammonia. Chem Mater 2023;35:2884-91.

18. Zhang Z, Liu Y, Su X, et al. Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Res 2023;16:6632-41.

19. Xiao C, Lu B, Xue P, et al. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 2020;4:2562-98.

20. Li Y, Li M, Li S, Liu Y, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met 2021;40:3406-41.

21. Feng S, Li D, Dong H, et al. Tailoring the Mo-N/Mo-O configuration in MoO2/Mo2N heterostructure for ampere-level current density hydrogen production. Appl Catal B Environ 2024;342:123451.

22. de Groot M, Koper M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J Electroanal Chem 2004;562:81-94.

23. Xu B, Li D, Zhao Q, Feng S, Peng X, Chu PK. Electrochemical reduction of nitrate to ammonia using non-precious metal-based catalysts. Coord Chem Rev 2024;502:215609.

24. Gao J, Jiang B, Ni C, Qi Y, Bi X. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies. Chem Eng J 2020;382:123034.

25. Tong W, Huang B, Wang P, Shao Q, Huang X. Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. Natl Sci Rev 2021;8:nwaa088.

26. Tan L, Yang N, Huang X, et al. Synthesis of ammonia via electrochemical nitrogen reduction on high-index faceted Au nanoparticles with a high faradaic efficiency. Chem Commun 2019;55:14482-5.

27. Bao D, Zhang Q, Meng FL, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater 2017;29:1604799.

28. Yu Y, Zhang Q, Liu B, Lee JY. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J Am Chem Soc 2010;132:18258-65.

29. Sun S, Zhang X, Cui J, Yang Q, Liang S. High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale 2019;11:15739-62.

30. Rosen J, Hutchings GS, Lu Q, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 2015;5:4293-9.

31. Dong JC, Su M, Briega-Martos V, et al. Direct in situ raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J Am Chem Soc 2020;142:715-9.

32. Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005;437:664-70.

33. Yang Y, Zhang J, Wei Y, et al. Solvent-dependent evolution of cyclic penta-twinned rhodium icosahedral nanocrystals and their enhanced catalytic properties. Nano Res 2018;11:656-64.

34. Liang H, Jiang X, Qi Z, et al. Hematite concave nanocubes and their superior catalytic activity for low temperature CO oxidation. Nanoscale 2014;6:7199-203.

35. Liang Y, Shang L, Bian T, et al. Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm 2012;14:4431.

36. Hu S, Tian N, Li M, et al. Trapezohedral platinum nanocrystals with high-index facets for high-performance hydrazine electrooxidation. Chem Synth 2023;3:4.

37. Huang L, Liu M, Lin H, et al. Shape regulation of high-index facet nanoparticles by dealloying. Science 2019;365:1159-63.

38. Han Y, Zhang X, Cai W, et al. Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia. J Colloid Interface Sci 2021;600:620-8.

39. Lim J, Liu C, Park J, et al. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal 2021;11:7568-77.

40. Guo Y, Cai X, Shen S, Wang G, Zhang J. Computational prediction and experimental evaluation of nitrate reduction to ammonia on rhodium. J Catal 2021;402:1-9.

41. Liu H, Timoshenko J, Bai L, et al. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia. ACS Catal 2023;13:1513-21.

42. Katsounaros I, Figueiredo MC, Chen X, Calle-vallejo F, Koper MT. Interconversions of nitrogen-containing species on Pt(100) and Pt(111) electrodes in acidic solutions containing nitrate. Electrochimica Acta 2018;271:77-83.

43. Molodkina EB, Botryakova IG, Rudnev AV, Ehrenburg MR. Redox-transitions in NO/NH3 adlayers on a Pt(111) electrode in an acidic solution. Electrochimica Acta 2023;444:141997.

44. Hu T, Wang C, Wang M, Li CM, Guo C. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal 2021;11:14417-27.

45. Fu Y, Wang S, Wang Y, et al. Enhancing electrochemical nitrate reduction to ammonia over Cu nanosheets via facet tandem catalysis. Angew Chem Int Ed Engl 2023;62:e202303327.

46. Hu Q, Qin Y, Wang X, et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy Environ Sci 2021;14:4989-97.

47. Zhong W, Gong Z, He Z, et al. Modulating surface oxygen species via facet engineering for efficient conversion of nitrate to ammonia. J Energy Chem 2023;78:211-21.

48. Yao Q, Chen J, Xiao S, Zhang Y, Zhou X. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl Mater Interfaces 2021;13:30458-67.

49. Crawford J, Yin H, Du A, O’Mullane AP. Nitrate-to-ammonia conversion at an InSn-enriched liquid-metal electrode. Angew Chem Int Ed Engl 2022;61:e202201604.

50. Zhang Y, Chen X, Wang W, Yin L, Crittenden JC. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl Catal B Environ 2022;310:121346.

51. Yin H, Peng Y, Li J. Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst. Environ Sci Technol 2023;57:3134-44.

52. Chen L, Xie A, Lou Y, Tian N, Zhou Z, Sun S. Electrochemical synthesis of tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. J Electroanal Chem 2022;907:116022.

53. Liu F, Chen C, Jiang X, et al. High-index surface structure engineering of Au–Pd concave triple-octahedrons for boosting electrocatalytic nitrate reduction to ammonia. ACS Sustain Chem Eng 2023;11:1631-7.

54. Li S, Ma P, Gao C, et al. Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ Sci 2022;15:3004-14.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/