REFERENCES

1. Solutions for plastic pollution. Nat Geosci 2023;16:655.

2. OECD. Global plastics outlook: policy scenarios to 2060. Paris: OECD Publishing; 2022.

3. Nava V, Chandra S, Aherne J, et al. Plastic debris in lakes and reservoirs. Nature 2023;619:317-22.

4. Pinheiro HT, MacDonald C, Santos RG, et al. Plastic pollution on the world’s coral reefs. Nature 2023;619:311-6.

5. Ali W, Ali H, Souissi S, Zinck P. Are bioplastics an ecofriendly alternative to fossil fuel plastics? Environ Chem Lett 2023;21:1991-2002.

6. Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int 2022;163:107199.

7. Landrigan PJ, Raps H, Cropper M, et al. The minderoo-monaco commission on plastics and human health. Ann Glob Health 2023;89:23.

8. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3:e1700782.

9. Howard SA, McCarthy RR. Modulating biofilm can potentiate activity of novel plastic-degrading enzymes. NPJ Biofilms Microbiomes 2023;9:72.

10. Lau WWY, Shiran Y, Bailey RM, et al. Evaluating scenarios toward zero plastic pollution. Science 2020;369:1455-61.

11. Kwon D. Three ways to solve the plastics pollution crisis. Nature 2023;616:234-7.

12. Zhang W, Kim S, Wahl L, et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 2023;379:807-11.

13. Dong Q, Lele AD, Zhao X, et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 2023;616:488-94.

14. Ahrens A, Bonde A, Sun H, et al. Catalytic disconnection of C-O bonds in epoxy resins and composites. Nature 2023;617:730-7.

15. Xu Z, Munyaneza NE, Zhang Q, et al. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 2023;381:666-71.

16. Jehanno C, Alty JW, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022;603:803-14.

17. Jung JM, Cho SH, Jung S, et al. Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation. J Hazard Mater 2022;430:128454.

18. Plastic upcycling. Nat Catal 2019;2:945-6.

19. Jie X, Li W, Slocombe D, et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat Catal 2020;3:902-12.

20. Conk RJ, Hanna S, Shi JX, et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 2022;377:1561-6.

21. Mark LO, Cendejas MC, Hermans I. The use of heterogeneous catalysis in the chemical valorization of plastic waste. ChemSusChem 2020;13:5808-36.

22. Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F. Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: a critical review. ACS Catal 2022;12:14882-901.

23. Yuan H, Li C, Shan R, Zhang J, Wu Y, Chen Y. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Process Technol 2022;238:107531.

24. Zhang Q, Yu J, Corma A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv Mater 2020;32:e2002927.

25. He J, Wu Z, Gu Q, et al. Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels. Angew Chem Int Ed Engl 2021;60:23713-21.

26. Wang H, Wang L, Xiao FS. Metal@Zeolite hybrid materials for catalysis. ACS Cent Sci 2020;6:1685-97.

27. Zhang Q, Gao S, Yu J. Metal sites in zeolites: synthesis, characterization, and catalysis. Chem Rev 2023;123:6039-106.

28. Lee WT, van Muyden A, Bobbink FD, Mensi MD, Carullo JR, Dyson PJ. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat Commun 2022;13:4850.

29. Ju C, Li M, Fang Y, Tan T. Efficient hydro-deoxygenation of lignin derived phenolic compounds over bifunctional catalysts with optimized acid/metal interactions. Green Chem 2018;20:4492-9.

30. Cheng K, Smulders LCJ, van der Wal LI, et al. Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science 2022;377:204-8.

31. Duan J, Chen W, Wang C, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J Am Chem Soc 2022;144:14269-77.

32. Li L, Luo H, Shao Z, et al. Converting plastic wastes to naphtha for closing the plastic loop. J Am Chem Soc 2023;145:1847-54.

33. Du J, Zeng L, Yan T, et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nat Nanotechnol 2023;18:772-9.

34. Kang Q, Chu M, Xu P, et al. Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angew Chem Int Ed Engl 2023;62:e202313174.

35. Soltani M, Rorrer JE. Converting waste plastic to liquid organic hydrogen carriers. Angew Chem Int Ed Engl 2023;62:e202314530.

36. Jahirul MI, Faisal F, Rasul MG, Schaller D, Khan MMK, Dexter RB. Automobile fuels (diesel and petrol) from plastic pyrolysis oil - Production and characterisation. Energy Rep 2022;8:730-5.

37. Vellaiyan S. Energy extraction from waste plastics and its optimization study for effective combustion and cleaner exhaust engaging with water and cetane improver: a response surface methodology approach. Environ Res 2023;231:116113.

38. Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK. Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers Manag 2017;148:925-34.

39. Mishra R, Kumar A, Singh E, Kumar S. Recent research advancements in catalytic pyrolysis of plastic waste. ACS Sustainable Chem Eng 2023;11:2033-49.

40. Corma A. Inorganic Solid Acids and Their use in acid-catalyzed hydrocarbon reactions. Chem Rev 1995;95:559-614.

41. Corma A, Orchillés A. Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater 2000;35-6:21-30.

42. Weitkamp J. Catalytic hydrocracking - mechanisms and versatility of the process. ChemCatChem 2012;4:292-306.

43. Miandad R, Barakat M, Aburiazaiza AS, Rehan M, Nizami A. Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot 2016;102:822-38.

44. Coelho A, Costa L, Marques M, Fonseca I, Lemos M, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A Gen 2012;413-4:183-91.

45. Santos BPS, Almeida D, Marques MDFV, Henriques CA. Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel 2018;215:515-21.

46. Figueiredo AL, Araujo AS, Linares M, et al. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system. J Anal Appl Pyrol 2016;117:132-40.

47. Serrano D, Aguado J, Escola J, Rodríguez J, San Miguel G. An investigation into the catalytic cracking of LDPE using Py-GC/MS. J Anal Appl Pyrol 2005;74:370-8.

48. Ratnasari DK, Nahil MA, Williams PT. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J Anal Appl Pyrol 2017;124:631-7.

49. Grün M, Unger KK, Matsumoto A, Tsutsumi K. Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater 1999;27:207-16.

50. Ungureanu A, Dragoi B, Hulea V, et al. Effect of aluminium incorporation by the “pH-adjusting” method on the structural, acidic and catalytic properties of mesoporous SBA-15. Microporous Mesoporous Mater 2012;163:51-64.

51. Zhang Z, Gora-Marek K, Watson JS, et al. Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat Sustain 2019;2:39-42.

52. Mosio-Mosiewski J, Warzala M, Morawski I, Dobrzanski T. High-pressure catalytic and thermal cracking of polyethylene. Fuel Process Technol 2007;88:359-64.

53. Munir D, Irfan MF, Usman MR. Hydrocracking of virgin and waste plastics: a detailed review. Renew Sustain Energy Rev 2018;90:490-515.

54. Hu K, Yang Y, Wang Y, Duan X, Wang S. Catalytic carbon and hydrogen cycles in plastics chemistry. Chem Catal 2022;2:724-61.

55. Celik G, Kennedy RM, Hackler RA, et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent Sci 2019;5:1795-803.

56. Tennakoon A, Wu X, Paterson AL, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat Catal 2020;3:893-901.

57. Jia C, Xie S, Zhang W, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catal 2021;1:437-55.

58. Chen L, Meyer LC, Kovarik L, et al. Disordered, sub-nanometer ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal 2022;12:4618-27.

59. Kots PA, Liu S, Vance BC, Wang C, Sheehan JD, Vlachos DG. Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts. ACS Catal 2021;11:8104-15.

60. Jing Y, Wang Y, Furukawa S, et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew Chem Int Ed Engl 2021;60:5527-35.

61. Vance BC, Kots PA, Wang C, et al. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl Catal B Environ 2021;299:120483.

62. Wang W, Liu CJ, Wu W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure. Catal Sci Technol 2019;9:4162-87.

63. Maesen TLM, Calero S, Schenk M, Smit B. Alkane hydrocracking: shape selectivity or kinetics? J Catal 2004;221:241-51.

64. Steijns M, Froment GF. Hydroisomerization and hydrocracking. 3. Kinetic analysis of rate data for n-decane and n-dodecane. Ind Eng Chem Prod Res Dev 1981;20:660-8.

65. Rorrer JE, Ebrahim AM, Questell-santiago Y, et al. Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catal 2022;12:13969-79.

66. Peng Y, Wang X, Wang C, Bi W, Jiang Q, Tian Z. Boosting catalytic performance via electron transfer effect for hydroisomerization on a low-Pt-content PtCeOX/zeolite catalyst. Chem Catal 2023;3:100505.

67. Shi Y, Xing E, Wu K, Wang J, Yang M, Wu Y. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal Sci Technol 2017;7:2385-415.

68. Luo W, Cao W, Bruijnincx PCA, Lin L, Wang A, Zhang T. Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chem 2019;21:3744-68.

69. Liu S, Kots PA, Vance BC, Danielson A, Vlachos DG. Plastic waste to fuels by hydrocracking at mild conditions. Sci Adv 2021;7:eabf8283.

70. Lee W, Bobbink FD, van Muyden AP, et al. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep Phys Sci 2021;2:100332.

71. Manal AK, Shanbhag GV, Srivastava R. Design of a bifunctional catalyst by alloying Ni with Ru-supported H-beta for selective hydrodeoxygenation of bisphenol A and polycarbonate plastic waste. Appl Catal B Environ 2023;338:123021.

72. Liu J, Wei J, Feng X, et al. Ni/HZSM-5 catalysts for hydrodeoxygenation of polycarbonate plastic wastes into cycloalkanes for sustainable aviation fuels. Appl Catal B Environ 2023;338:123050.

73. Nasution F, Husin H, Mahidin, et al. Conversion of pyrolysis vapors derived from non-biodegradable waste plastics (PET) into valuable fuels using nickel-impregnated HZSM5-70 catalysts. Energy Convers Manag 2022;273:116440.

74. Eze WU, Madufor IC, Onyeagoro GN, Obasi HC, Ugbaja MI. Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym Bull 2021;78:377-98.

75. Zhang F, Zeng M, Yappert RD, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020;370:437-41.

76. Wang G, Zhu X, Li C. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes. Chem Rec 2020;20:604-16.

77. Perego C, Ingallina P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 2002;73:3-22.

78. Tian X, Zeng Z, Liu Z, et al. Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: Comparison of HZSM-5, Hβ, HY and MCM-41. J Clean Prod 2022;358:131989.

79. Dai L, Zhou N, Lv Y, et al. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog Energy Combust Sci 2022;93:101021.

80. Vichaphund S, Aht-ong D, Sricharoenchaikul V, Atong D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew Energy 2015;79:28-37.

81. Zhou S, Li P, Pan H, Zhang Y. Improvement of aromatics selectivity from catalytic pyrolysis of low-density polyethylene with metal-modified HZSM-5 in a CO2 atmosphere. Ind Eng Chem Res 2022;61:11407-16.

82. Qian K, Tian W, Yin L, Yang Z, Tian F, Chen D. Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Appl Catal B Environ 2023;339:123159.

83. Duan J, Wang H, Li H, et al. Selective conversion of polyethylene wastes to methylated aromatics through cascade catalysis. EES Catal 2023;1:529-38.

84. Marquez C, Martin C, Linares N, De Vos D. Catalytic routes towards polystyrene recycling. Mater Horiz 2023;10:1625-40.

85. Wang J, Jiang J, Sun Y, et al. Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Convers Manag 2019;200:112088.

86. Serrano DP, Aguado J, Escola JM. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2-Al2O3: comparison with thermal cracking. Appl Catal B Environ 2000;25:181-9.

87. Ojha DK, Vinu R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J Anal Appl Pyrol 2015;113:349-59.

88. Coates GW, Getzler YDYL. Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater 2020;5:501-16.

89. Vollmer I, Jenks MJF, Roelands MCP, et al. Beyond mechanical recycling: giving new life to plastic waste. Angew Chem Int Ed Engl 2020;59:15402-23.

90. Hou Q, Zhen M, Qian H, et al. Upcycling and catalytic degradation of plastic wastes. Cell Rep Phys Sci 2021;2:100514.

91. Tournier V, Topham CM, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020;580:216-9.

92. Rorrer NA, Nicholson S, Carpenter A, Biddy MJ, Grundl NJ, Beckham GT. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 2019;3:1006-27.

93. Kang MJ, Yu HJ, Jegal J, Kim HS, Cha HG. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem Eng J 2020;398:125655.

94. Du J, Sun Q, Zeng X, Wang D, Wang J, Chen J. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem Eng Sci 2020;220:115642.

95. Mancini SD, Zanin M. Post Consumer pet depolymerization by acid hydrolysis. Polym Plast Technol Eng 2007;46:135-44.

96. Wang C, Xu N, Liu T, et al. Mechanical pressure-mediated Pd active sites formation in NaY zeolite catalysts for indirect oxidative carbonylation of methanol to dimethyl carbonate. J Catal 2021;396:269-80.

97. Tang S, Li F, Liu J, Guo B, Tian Z, Lv J. MgO/NaY as modified mesoporous catalyst for methanolysis of polyethylene terephthalate wastes. J Environ Chem Eng 2022;10:107927.

98. Guo B, Liu J, Tang S, Liu Y, Tian Z, Lv J. Hydrolysis of dimethyl terephthalate to terephthalic acid on Nb-modified HZSM-5 zeolite catalysts. J Chem Tech Biotech 2022;97:1695-704.

99. Wei Y, Liu Z, Wang G, et al. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature. Stud Surf Sci Catal 2005;158:1223-30.

100. Eschenbacher A, Goodarzi F, Varghese RJ, et al. Boron-modified mesoporous ZSM-5 for the conversion of pyrolysis vapors from LDPE and mixed polyolefins: maximizing the C2-C4 olefin yield with minimal carbon footprint. ACS Sustainable Chem Eng 2021;9:14618-30.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/