REFERENCES

1. Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev 2020;49:1357-84.

2. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, et al. Designed synthesis of 3D covalent organic frameworks. Science 2007;316:268-72.

3. Guan X, Fang Q, Yan Y, Qiu S. Functional regulation and stability engineering of three-dimensional covalent organic frameworks. Acc Chem Res 2022;55:1912-27.

4. Fang Q, Ma S. Covalent organic frameworks. Macromol Rapid Commun 2023;44:e2300203.

5. Guan X, Chen F, Qiu S, Fang Q. Three-dimensional covalent organic frameworks: from synthesis to applications. Angew Chem Int Ed Engl 2023;62:e202213203.

6. Yusran Y, Guan X, Li H, Fang Q, Qiu S. Postsynthetic functionalization of covalent organic frameworks. Natl Sci Rev 2020;7:170-90.

7. Yusran Y, Fang Q, Qiu S. Postsynthetic covalent modification in covalent organic frameworks. Isr J Chem 2018;58:971-84.

8. Nguyen HL. Reticular design and crystal structure determination of covalent organic frameworks. Chem Sci 2021;12:8632-47.

9. Gropp C, Canossa S, Wuttke S, et al. Standard practices of reticular chemistry. ACS Cent Sci 2020;6:1255-73.

10. Lyu H, Ji Z, Wuttke S, Yaghi OM. Digital reticular chemistry. Chem 2020;6:2219-41.

11. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed Engl 2014;53:2878-82.

12. Evans AM, Ryder MR, Ji W, et al. Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss 2021;225:226-40.

13. Ma X, Scott TF. Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks. Commun Chem 2018;1:98.

14. Tran QN, Lee HJ, Tran N. Covalent organic frameworks: from structures to applications. Polymers 2023;15:1279.

15. Vardhan H, Nafady A, Al-Enizi AM, Ma S. Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale 2019;11:21679-708.

16. Ma T, Li J, Niu J, et al. Observation of interpenetration isomerism in covalent organic frameworks. J Am Chem Soc 2018;140:6763-6.

17. Garai B, Shetty D, Skorjanc T, et al. Taming the topology of calix[4]arene-based 2D-covalent organic frameworks: interpenetrated vs noninterpenetrated frameworks and their selective removal of cationic dyes. J Am Chem Soc 2021;143:3407-15.

18. Li Y, Chen W, Xing G, Jiang D, Chen L. New synthetic strategies toward covalent organic frameworks. Chem Soc Rev 2020;49:2852-68.

19. Ding J, Guan X, Lv J, et al. Three-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis. J Am Chem Soc 2023;145:3248-54.

20. Chang J, Chen F, Li H, et al. Three-dimensional covalent organic frameworks with nia nets for efficient separation of benzene/cyclohexane mixtures. Nat Commun 2024;15:813.

21. Yahiaoui O, Fitch AN, Hoffmann F, Fröba M, Thomas A, Roeser J. 3D anionic silicate covalent organic framework with srs topology. J Am Chem Soc 2018;140:5330-3.

22. Nguyen HL, Gropp C, Ma Y, Zhu C, Yaghi OM. 3D covalent organic frameworks selectively crystallized through conformational design. J Am Chem Soc ;2020:20335-9.

23. Xu X, Cai P, Chen H, Zhou HC, Huang N. Three-dimensional covalent organic frameworks with she topology. J Am Chem Soc 2022;144:18511-7.

24. Lan Y, Han X, Tong M, et al. Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nat Commun 2018;9:5274.

25. Kang X, Han X, Yuan C, Cheng C, Liu Y, Cui Y. Reticular synthesis of tbo topology covalent organic frameworks. J Am Chem Soc 2020;142:16346-56.

26. Zhu D, Zhu Y, Chen Y, et al. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023;14:2865.

27. Wang X, Bahri M, Fu Z, et al. A cubic 3D covalent organic framework with nbo topology. J Am Chem Soc 2021;143:15011-6.

28. Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 2009;131:4570-1.

29. Lin G, Ding H, Yuan D, Wang B, Wang C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J Am Chem Soc 2016;138:3302-5.

30. Liu Y, Li J, Lv J, et al. Topological isomerism in three-dimensional covalent organic frameworks. J Am Chem Soc 2023;145:9679-85.

31. Ma T, Kapustin EA, Yin SX, et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 2018;361:48-52.

32. Xie Y, Li J, Lin C, et al. Tuning the topology of three-dimensional covalent organic frameworks via steric control: from pts to unprecedented ljh. J Am Chem Soc 2021;143:7279-84.

33. Li H, Ding J, Guan X, et al. Three-dimensional large-pore covalent organic framework with stp topology. J Am Chem Soc 2020;142:13334-8.

34. Li H, Chen F, Guan X, et al. Three-dimensional triptycene-based covalent organic frameworks with ceq or acs topology. J Am Chem Soc 2021;143:2654-9.

35. Li Z, Sheng L, Wang H, et al. Three-dimensional covalent organic framework with ceq topology. J Am Chem Soc 2021;143:92-6.

36. Yu C, Li H, Wang Y, et al. Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption. Angew Chem Int Ed Engl 2022;61:e202117101.

37. Gropp C, Ma T, Hanikel N, Yaghi OM. Design of higher valency in covalent organic frameworks. Science 2020;370:eabd6406.

38. Shan Z, Wu M, Zhu D, et al. 3D covalent organic frameworks with interpenetrated pcb topology based on 8-connected cubic nodes. J Am Chem Soc 2022;144:5728-33.

39. Liu W, Wang K, Zhan X, et al. Highly connected three-dimensional covalent organic framework with flu topology for high-performance Li-S batteries. J Am Chem Soc 2023;145:8141-9.

40. Jin F, Lin E, Wang T, et al. Rationally fabricating 3D porphyrinic covalent organic frameworks with scu topology as highly efficient photocatalysts. Chem 2022;8:3064-80.

41. Wu M, Shan Z, Wang J, Liu T, Zhang G. Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production. Chem Eng J 2023;454:140121.

42. Zhang Y, Duan J, Ma D, et al. Three-dimensional anionic cyclodextrin-based covalent organic frameworks. Angew Chem Int Ed Engl 2017;56:16313-7.

43. Martínez-Abadía M, Strutyński K, Lerma-Berlanga B, et al. π-interpenetrated 3D covalent organic frameworks from distorted polycyclic aromatic hydrocarbons. Angew Chem Int Ed Engl 2021;60:9941-6.

44. Lu HS, Han WK, Yan X, Chen CJ, Niu T, Gu ZG. A 3D anionic metal covalent organic framework with soc topology built from an octahedral Ti(IV) complex for photocatalytic reactions. Angew Chem Int Ed Engl 2021;60:17881-6.

45. Lyle SJ, Waller PJ, Yaghi OM. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem 2019;1:172-84.

46. Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM. Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 2008;130:11872-3.

47. Stewart D, Antypov D, Dyer MS, et al. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking. Nat Commun 2017;8:1102.

48. Fang Q, Wang J, Gu S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 2015;137:8352-5.

49. Sun R, Wang X, Wang X, Tan B. Three-dimensional crystalline covalent triazine frameworks via a polycondensation approach. Angew Chem Int Ed Engl 2022;61:e202117668.

50. Beaudoin D, Maris T, Wuest JD. Constructing monocrystalline covalent organic networks by polymerization. Nat Chem 2013;5:830-4.

51. Wang S, Li XX, Da L, et al. A three-dimensional sp2 carbon-conjugated covalent organic framework. J Am Chem Soc 2021;143:15562-6.

52. Zhu Y, Long H, Zhang W. Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 2013;25:1630-5.

53. Hu J, Huang Z, Liu Y. Beyond solvothermal: alternative synthetic methods for covalent organic frameworks. Angew Chem Int Ed Engl 2023;62:e202306999.

54. Guan X, Ma Y, Li H, et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J Am Chem Soc 2018;140:4494-8.

55. Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed Engl 2004;43:6250-84.

56. Estel L, Poux M, Benamara N, Polaert I. Continuous flow-microwave reactor: where are we? Chem Eng Process 2017;113:56-64.

57. Campbell NL, Clowes R, Ritchie LK, Cooper AI. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 2009;21:204-6.

58. Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev 2015;285:11-23.

59. Gogate PR, Sutkar VS, Pandit AB. Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 2011;166:1066-82.

60. Zhao W, Yan P, Yang H, et al. Using sound to synthesize covalent organic frameworks in water. Nat Synth 2022;1:87-95.

61. He J, Jiang X, Xu F, et al. Low power, low temperature and atmospheric pressure plasma-induced polymerization: facile synthesis and crystal regulation of covalent organic frameworks. Angew Chem Int Ed Engl 2021;60:9984-9.

62. Zhang YB, Su J, Furukawa H, et al. Single-crystal structure of a covalent organic framework. J Am Chem Soc 2013;135:16336-9.

63. Evans AM, Castano I, Brumberg A, et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J Am Chem Soc 2019;141:19728-35.

64. Peng L, Sun J, Huang J, et al. Ultra-fast synthesis of single-crystalline three-dimensional covalent organic frameworks and their applications in polarized optics. Chem Mater 2022;34:2886-95.

65. Lu H, Wang C, Chen J, et al. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chem Commun 2015;51:15562-5.

66. Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 2016;138:7673-80.

67. Yang Y, Chen Y, Izquierdo-Ruiz F, Schäfer C, Rahm M, Börjesson K. A self-standing three-dimensional covalent organic framework film. Nat Commun 2023;14:220.

68. Huang J, Han X, Yang S, et al. Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene. J Am Chem Soc 2019;141:8996-9003.

69. Bunck DN, Dichtel WR. Internal functionalization of three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2012;51:1885-9.

70. Xu L, Zhou X, Tian WQ, et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew Chem Int Ed Engl 2014;53:9564-8.

71. Tao R, Ma X, Wei X, Jin Y, Qiu L, Zhang W. Porous organic polymer material supported palladium nanoparticles. J Mater Chem A 2020;8:17360-91.

72. Zeng Y, Zou R, Zhao Y. Covalent organic frameworks for CO2 Capture. Adv Mater 2016;28:2855-73.

73. Guo X, Qiao Z, Liu D, Zhong C. Mixed-matrix membranes for CO2 separation: role of the third component. J Mater Chem A 2019;7:24738-59.

74. Furukawa H, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 2009;131:8875-83.

75. Li H, Pan Q, Ma Y, et al. Three-dimensional covalent organic frameworks with dual linkages for bifunctional cascade catalysis. J Am Chem Soc 2016;138:14783-8.

76. Li Z, Li H, Guan X, et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange. J Am Chem Soc 2017;139:17771-4.

77. Guan P, Qiu J, Zhao Y, et al. A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion. Chem Commun 2019;55:12459-62.

78. Zhu Q, Wang X, Clowes R, et al. 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J Am Chem Soc 2020;142:16842-8.

79. Kumar G, Singh M, Goswami R, Neogi S. Structural dynamism-actuated reversible CO2 adsorption switch and postmetalation-induced visible light Cα-H photocyanation with rare size selectivity in N-functionalized 3D covalent organic framework. ACS Appl Mater Interfaces 2020;12:48642-53.

80. Gao C, Li J, Yin S, et al. Isostructural three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2019;58:9770-5.

81. Zhang L, Wang D, Cong M, et al. Construction of rigid amine-linked three-dimensional covalent organic frameworks for selectively capturing carbon dioxide. Chem Commun 2023;59:4911-4.

82. Song J, Wang Z, Liu Y, et al. A three-dimensional covalent organic framework for CO2 uptake and dyes adsorption. Chem Res Chin Univ 2022;38:834-7.

83. Reardon H, Hanlon JM, Hughes RW, Godula-jopek A, Mandal TK, Gregory DH. Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design. Energy Environ Sci 2012;5:5951.

84. Zhu L, Zhang YB. Crystallization of covalent organic frameworks for gas storage applications. Molecules 2017;22:1149.

85. Chen Z, Kirlikovali KO, Idrees KB, Wasson MC, Farha OK. Porous materials for hydrogen storage. Chem 2022;8:693-716.

86. Nemiwal M, Sharma V, Kumar D. Improved designs of multifunctional covalent-organic frameworks: hydrogen storage, methane storage, and water harvesting. MROC 2021;18:1026-36.

87. Kalidindi SB, Oh H, Hirscher M, et al. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material. Chem 2012;18:10848-56.

88. Li Z, Sheng L, Hsueh C, et al. Three-dimensional covalent organic frameworks with hea topology. Chem Mater 2021;33:9618-23.

89. Liao L, Guan X, Zheng H, et al. Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units. Chem Sci 2022;13:9305-9.

90. Alahakoon SB, Thompson CM, Occhialini G, Smaldone RA. Design principles for covalent organic frameworks in energy storage applications. ChemSusChem 2017;10:2116-29.

91. Chang F, Zhou J, Chen P, et al. Microporous and mesoporous materials for gas storage and separation: a review. Asia Pacific J Chem Eng 2013;8:618-26.

92. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev 2012;41:6010-22.

93. Ma H, Ren H, Meng S, et al. A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chem Commun 2013;49:9773-5.

94. Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. J Hazard Mater 2023;458:131835.

95. Skorjanc T, Shetty D, Trabolsi A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 2021;7:882-918.

96. Yang Y, Tu C, Yin H, Liu J, Cheng F, Luo F. Molecular iodine capture by covalent organic frameworks. Molecules 2022;27:9045.

97. Wang C, Wang Y, Ge R, et al. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem 2018;24:585-9.

98. Wang G, Xie K, Zhu F, et al. Construction of tetrathiafulvalene-based covalent organic frameworks for superior iodine capture. Chem Res Chin Univ 2022;38:409-14.

99. Chang J, Li H, Zhao J, et al. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chem Sci 2021;12:8452-7.

100. Liu T, Zhao Y, Song M, et al. Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine. J Am Chem Soc 2023;145:2544-52.

101. Zou J, Wen D, Zhao Y. Flexible three-dimensional diacetylene functionalized covalent organic frameworks for efficient iodine capture. Dalton Trans 2023;52:731-6.

102. Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced covalent organic framework-based membranes for recovery of ionic resources. Small 2023;19:2206041.

103. Yu J, Yuan L, Wang S, et al. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chem 2019;1:286-95.

104. Cao S, Li B, Zhu R, Pang H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 2019;355:602-23.

105. Huang L, Liu R, Yang J, et al. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions. Chem Eng J 2021;408:127991.

106. Zhang CR, Cui WR, Xu RH, et al. Alkynyl-based sp2 carbon-conjugated covalent organic frameworks with enhanced uranium extraction from seawater by photoinduced multiple effects. CCS Chem 2021;3:168-79.

107. Cui W, Chen Y, Xu W, et al. A three-dimensional luminescent covalent organic framework for rapid, selective, and reversible uranium detection and extraction. Sep Purif Technol 2023;306:122726.

108. Zhang C, Qi J, Cui W, et al. A novel 3D sp2 carbon-linked covalent organic framework as a platform for efficient electro-extraction of uranium. Sci China Chem 2023;66:562-9.

109. Chen Y, Wang X, Xu W, et al. Constructing redox-active 3D covalent organic frameworks with high-affinity hexameric binding sites for enhanced uranium capture. Chem Eng J 2023;459:141633.

110. Liu Y, Pang H, Wang X, et al. Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review. Chem Eng J 2021;406:127139.

111. Liu M, Kong H, Bi S, et al. Non-interpenetrated 3D covalent organic framework with dia topology for Au ions capture. Adv Funct Mater 2023;33:2302637.

112. Nandanwar SU, Coldsnow K, Utgikar V, Sabharwall P, Eric Aston D. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment - a review. Chem Eng J 2016;306:369-81.

113. Zhang CR, Cui WR, Yi SM, et al. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4- or 99TcO4-. Nat Commun 2022;13:7621.

114. Wang Y, Lan J, Yang X, et al. Superhydrophobic phosphonium modified robust 3D covalent organic framework for preferential trapping of charge dispersed oxoanionic pollutants. Adv Funct Mater 2022;32:2205222.

115. Li B, Chen J, Xiao J, Zhao L, Qiu H. Nanoporous sulfonic covalent organic frameworks for selective adsorption and separation of lanthanide elements. ACS Appl Nano Mater 2023;6:2498-506.

116. Lu Q, Ma Y, Li H, et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew Chem Int Ed Engl 2018;57:6042-8.

117. Wang L, Liu J, Wang J, Huang J. Bifunctional thiophene-based covalent organic frameworks for Hg2+ removal and I2 vapor adsorption. Chem Eng J 2023;473:145405.

118. Zhang Y, Li H, Chang J, et al. 3D thioether-based covalent organic frameworks for selective and efficient mercury removal. Small 2021;17:2006112.

119. Gendy EA, Oyekunle DT, Ifthikar J, Jawad A, Chen Z. A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environ Sci Pollut Res Int 2022;29:32566-93.

120. Moroni M, Roldan-Molina E, Vismara R, Galli S, Navarro JAR. Impact of pore flexibility in imine-linked covalent organic frameworks on benzene and cyclohexane adsorption. ACS Appl Mater Interfaces 2022;14:40890-901.

121. Li Z, Hsueh C, Tang Z, et al. Rational design of imine-linked three-dimensional mesoporous covalent organic frameworks with bor topology. SusMat 2022;2:197-205.

122. Mohammed AK, Ali JK, Kuzhimully MBS, et al. The fragmented 3D-covalent organic framework in cellulose acetate membrane for efficient phenol removal. Chem Eng J 2023;466:143234.

123. Lu F, Lin J, Lin C, Qi G, Lin X, Xie Z. Heteroporous 3D covalent organic framework-based magnetic nanospheres for sensitive detection of bisphenol A. Talanta 2021;231:122343.

124. Lu F, Wu M, Lin C, Lin X, Xie Z. Efficient and selective solid-phase microextraction of polychlorinated biphenyls by using a three-dimensional covalent organic framework as functional coating. J Chromatogr A 2022;1681:463419.

125. Li W, Xue Y, Fu X, Ma Z, Feng J. Covalent organic framework reinforced hollow fiber for solid-phase microextraction and determination of pesticides in foods. Food Control 2022;133:108587.

126. Walker G, Weatherley L. Adsorption of dyes from aqueous solution - the effect of adsorbent pore size distribution and dye aggregation. Chem Eng J 2001;83:201-6.

127. Liu Y, Ma Y, Yang J, et al. Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J Am Chem Soc 2018;140:16015-9.

128. Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent organic frameworks for biomedical applications. Adv Healthc Mater 2021;10:e2002090.

129. Liao L, Zhang Z, Guan X, et al. Three-dimensional sp2 carbon-linked covalent organic frameworks as a drug carrier combined with fluorescence imaging. Chin J Chem 2022;40:2081-8.

130. Das S, Sekine T, Mabuchi H, et al. Three-dimensional covalent organic framework with scu-c topology for drug delivery. ACS Appl Mater Interfaces 2022;14:48045-51.

131. Zhao Y, Das S, Sekine T, et al. Record ultralarge-pores, low density three-dimensional covalent organic framework for controlled drug delivery. Angew Chem Int Ed Engl 2023;62:e202300172.

132. Wan X, Yin J, Yan Q, et al. Sustained-release nanocapsule based on a 3D COF for long-term enzyme prodrug therapy of cancer. Chem Commun 2022;58:5877-80.

133. Cheng Y, Zhai L, Ying Y, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. J Mater Chem A 2019;7:4549-60.

134. Li B, Wang Z, Gao Z, et al. Self-standing covalent organic framework membranes for H2/CO2 separation. Adv Funct Mater 2023;33:2300219.

135. Ji C, Su K, Wang W, et al. Tunable cage-based three-dimensional covalent organic frameworks. CCS Chem 2022;4:3095-105.

136. Yang J, André L, Desbois N, Gros C, Brandès S. 2D/3D covalent organic frameworks based on cobalt corroles for CO binding. Mater Today Chem 2023;28:101357.

137. Fu J, Ben T. Fabrication of a novel covalent organic framework membrane and its gas separation performance. Acta Chim Sinica 2020;78:805.

138. Yang Y, Goh K, Weerachanchai P, Bae T. 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging. J Membrane Sci 2019;574:235-42.

139. Gao C, Li J, Yin S, Sun J, Wang C. Redox-triggered switching in three-dimensional covalent organic frameworks. Nat Commun 2020;11:4919.

140. Gui B, Liu X, Cheng Y, et al. Tailoring the pore surface of 3D covalent organic frameworks via post-synthetic click chemistry. Angew Chem Int Ed Engl 2022;61:e202113852.

141. Wu Y, Weckhuysen BM. Separation and purification of hydrocarbons with porous materials. Angew Chem Int Ed Engl 2021;60:18930-49.

142. Baldwin LA, Crowe JW, Pyles DA, McGrier PL. Metalation of a mesoporous three-dimensional covalent organic framework. J Am Chem Soc 2016;138:15134-7.

143. Jin F, Lin E, Wang T, et al. Bottom-up synthesis of 8-connected three-dimensional covalent organic frameworks for highly efficient ethylene/ethane separation. J Am Chem Soc 2022;144:5643-52.

144. Gong C, Wang H, Sheng G, et al. Synthesis and visualization of entangled 3D covalent organic frameworks with high-valency stereoscopic molecular nodes for gas separation. Angew Chem Int Ed Engl 2022;61:e202204899.

145. Li J, Zhou X, Wang J, Li X. Two-dimensional covalent organic frameworks (COFs) for membrane separation: a mini review. Ind Eng Chem Res 2019;58:15394-406.

146. Ying Y, Yang Y, Ying W, Peng X. Two-dimensional materials for novel liquid separation membranes. Nanotechnology 2016;27:332001.

147. Shi X, Zhang Z, Yin C, et al. Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew Chem Int Ed Engl 2022;61:e202207559.

148. Mohammed AK, Al Khoori AA, Addicoat MA, et al. Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching. Angew Chem Int Ed Engl 2022;61:e202200905.

149. Ma Y, Wang Y, Li H, et al. Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering. Angew Chem Int Ed Engl 2020;59:19633-8.

150. Ahmed I, Jhung SH. Covalent organic framework-based materials: synthesis, modification, and application in environmental remediation. Coord Chem Rev 2021;441:213989.

151. Wang X, Shi B, Yang H, et al. Assembling covalent organic framework membranes with superior ion exchange capacity. Nat Commun 2022;13:1020.

152. Sun W, Zhang L, Xiang Y, Ye N. Preliminary exploration of the dye/salt separation performance of 2D and 3D covalent organic frameworks/nylon 6 membranes prepared by layer-by-layer strategy. Chem Eng Res Des 2023;193:759-67.

153. Shi X, Zhang Z, Fang S, Wang J, Zhang Y, Wang Y. Flexible and robust three-dimensional covalent organic framework membranes for precise separations under extreme conditions. Nano Lett 2021;21:8355-62.

154. Shi X, Zhang Z, Wei M, et al. Three-dimensional covalent organic framework membranes: synthesis by oligomer interfacial ripening and application in precise separations. Macromolecules 2022;55:3259-66.

155. Lu Y, Zhang H, Zhu Y, Marriott PJ, Wang H. Emerging homochiral porous materials for enantiomer separation. Adv Funct Mater 2021;31:2101335.

156. Han X, Huang J, Yuan C, Liu Y, Cui Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 2018;140:892-5.

157. Holcroft JM, Hartlieb KJ, Moghadam PZ, et al. Carbohydrate-mediated purification of petrochemicals. J Am Chem Soc 2015;137:5706-19.

158. Qian HL, Yang C, Yan XP. Layer-by-layer preparation of 3D covalent organic framework/silica composites for chromatographic separation of position isomers. Chem Commun 2018;54:11765-8.

159. Qian HL, Wang ZH, Yang J, Yan XP. Building-block exchange synthesis of amino-based three-dimensional covalent organic frameworks for gas chromatographic separation of isomers. Chem Commun 2022;58:8133-6.

160. Du ML, Yang C, Qian HL, Yan XP. Hydroxyl-functionalized three-dimensional covalent organic framework for selective and rapid extraction of organophosphorus pesticides. J Chromatogr A 2022;1673:463071.

161. Liu X, Yang C, Qian H, Yan X. Three-dimensional nanoporous covalent organic framework-incorporated monolithic columns for high-performance liquid chromatography. ACS Appl Nano Mater 2021;4:5437-43.

162. Wang ZH, Yang C, Liu T, Qian HL, Yan XP. Particle size regulation of single-crystalline covalent organic frameworks for high performance of gas chromatography. Anal Chem 2023;95:8145-9.

163. Zong R, Wang X, Yin H, et al. Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography. J Chromatogr A 2021;1656:462549.

164. Yin H, Zhen Z, Ning W, Zhang L, Xiang Y, Ye N. Three-dimensional fluorinated covalent organic frameworks coated capillary for the separation of fluoroquinolones by capillary electrochromatography. J Chromatogr A 2023;1706:464234.

165. Niu X, Lv W, Sun Y, Dai H, Chen H, Chen X. In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography. Mikrochim Acta 2020;187:233.

166. Guo J, Jiang D. Covalent organic frameworks for heterogeneous catalysis: principle, current status, and challenges. ACS Cent Sci 2020;6:869-79.

167. Zhi Y, Wang Z, Zhang HL, Zhang Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 2020;16:2001070.

168. Zhang H, Lou LL, Yu K, Liu S. Advances in chiral metal-organic and covalent organic frameworks for asymmetric catalysis. Small 2021;17:e2005686.

169. Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou J. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials. ACS Catal 2020;10:12256-83.

170. Chen F, Guan X, Li H, et al. Three-dimensional radical covalent organic frameworks as highly efficient and stable catalysts for selective oxidation of alcohols. Angew Chem Int Ed Engl 2021;60:22230-5.

171. Yan S, Guan X, Li H, et al. Three-dimensional salphen-based covalent-organic frameworks as catalytic antioxidants. J Am Chem Soc 2019;141:2920-4.

172. Song J, Yu C, Liu Y, et al. An FeSx doped three-dimensional covalent organic framework for degradation of dyes. Mater Chem Front 2023;7:1431-6.

173. Haque N, Biswas S, Ghosh S, Chowdhury AH, Khan A, Islam SM. Zn(II)-embedded nanoporous covalent organic frameworks for catalytic conversion of CO2 under solvent-free conditions. ACS Appl Nano Mater 2021;4:7663-74.

174. Liu Y, Wu C, Sun Q, et al. Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst. CCS Chem 2021;3:2418-27.

175. Sun Q, Wu C, Pan Q, et al. Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst. ChemNanoMat 2021;7:95-9.

176. Hou B, Yang S, Yang K, et al. Confinement-driven enantioselectivity in 3D porous chiral covalent organic frameworks. Angew Chem Int Ed Engl 2021;60:6086-93.

177. Huang J, Tao Y, Ran S, et al. A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. New J Chem 2022;46:17153-60.

178. Jin P, Niu X, Gao Z, et al. Ultrafine platinum nanoparticles supported on covalent organic frameworks as stable and reusable oxidase-like catalysts for cellular glutathione detection. ACS Appl Nano Mater 2021;4:5834-41.

179. Ma YX, Li ZJ, Wei L, Ding SY, Zhang YB, Wang W. A dynamic three-dimensional covalent organic framework. J Am Chem Soc 2017;139:4995-8.

180. Gao W, Sun X, Niu H, et al. Phosphomolybdic acid functionalized covalent organic frameworks: structure characterization and catalytic properties in olefin epoxidation. Micropor Mesopor Mater 2015;213:59-67.

181. He T, Zhao Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew Chem Int Ed Engl 2023;62:e202303086.

182. Meng Y, Luo Y, Shi JL, et al. 2D and 3D porphyrinic covalent organic frameworks: the influence of dimensionality on functionality. Angew Chem Int Ed Engl 2020;59:3624-9.

183. Chao J, Wang Z, Liu H, et al. A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. J Catal 2022;413:692-702.

184. Wang XL, Sun YY, Xiao Y, Chen XX, Huang XC, Zhou HL. Facile solution-refluxing synthesis and photocatalytic dye degradation of a dynamic covalent organic framework. Molecules 2022;27:8002.

185. Yu TY, Niu Q, Chen Y, et al. Interpenetrating 3D covalent organic framework for selective stilbene photoisomerization and photocyclization. J Am Chem Soc 2023;145:8860-70.

186. Lu M, Zhang SB, Yang MY, et al. Dual photosensitizer coupled three-dimensional metal-covalent organic frameworks for efficient photocatalytic reactions. Angew Chem Int Ed Engl 2023;62:e202307632.

187. Dong P, Xu X, Luo R, Yuan S, Zhou J, Lei J. Postsynthetic annulation of three-dimensional covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc 2023;145:15473-81.

188. Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. 3D porphyrin-based covalent organic frameworks. J Am Chem Soc 2017;139:8705-9.

189. Hynek J, Zelenka J, Rathouský J, et al. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl Mater Interfaces 2018;10:8527-35.

190. Zhang X, Wang S, Tang K, et al. Cu2+ embedded three-dimensional covalent organic framework for multiple ROS-based cancer immunotherapy. ACS Appl Mater Interfaces 2022;14:30618-25.

191. Yan D, Lin E, Jin F, et al. Engineering COFs as smart triggers for rapid capture and controlled release of singlet oxygen. J Mater Chem A 2021;9:27434-41.

192. Zhang L, Yang LL, Wan SC, et al. Three-dimensional covalent organic frameworks with cross-linked pores for efficient cancer immunotherapy. Nano Lett 2021;21:7979-88.

193. Kim J, Kim H, Han GH, et al. Electrodeposition: an efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. Exploration 2022;2:20210077.

194. Li D, Li C, Zhang L, et al. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J Am Chem Soc 2020;142:8104-8.

195. Liu J, Zhao J, Li C, et al. Precise modulation of carbon activity sites in metal-free covalent organic frameworks for enhanced oxygen reduction electrocatalysis. Small 2024;20:2305759.

196. Li J, Jia J, Suo J, et al. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. J Mater Chem A 2023;11:18349-55.

197. Chang J, Li C, Wang X, et al. Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nanomicro Lett 2023;15:159.

198. Wang R, Zhang Z, Suo J, et al. Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic-π interactions. Chem Eng J 2023;478:147403.

199. Liu Y, Yan X, Li T, et al. Three-dimensional porphyrin-based covalent organic frameworks with tetrahedral building blocks for single-site catalysis. New J Chem 2019;43:16907-14.

200. Gong C, Yang X, Wei X, et al. Three-dimensional porphyrin-based covalent organic frameworks with stp topology for an efficient electrocatalytic oxygen evolution reaction. Mater Chem Front 2023;7:230-7.

201. Meng H, Wu B, Sun T, et al. Oxidization-induced structural optimization of Ni3Fe-N-C derived from 3D covalent organic framework for high-efficiency and durable oxygen evolution reaction. Nano Res 2023;16:6710-20.

202. Tavakoli E, Kakekhani A, Kaviani S, et al. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J Am Chem Soc 2019;141:19560-4.

203. Zhou M, Liu M, Miao Q, Shui H, Xu Q. Synergetic Pt atoms and nanoparticles anchored in standing carbon-derived from covalent organic frameworks for catalyzing ORR. Adv Materials Inter 2022;9:2201263.

204. Li J, Liu P, Mao J, Yan J, Song W. Revealing the structure-activity relationship in woven covalent organic frameworks for the electrocatalytic oxygen reduction reaction. Nanoscale 2022;14:6126-32.

205. Bao R, Xiang Z, Qiao Z, et al. Designing thiophene-enriched fully conjugated 3D covalent organic framework as metal-free oxygen reduction catalyst for hydrogen fuel cells. Angew Chem Int Ed Engl 2023;62:e202216751.

206. Chi S, Chen Q, Zhao S, et al. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J Mater Chem A 2022;10:4653-9.

207. Han B, Jin Y, Chen B, et al. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis. Angew Chem Int Ed Engl 2022;61:e202114244.

208. Yusran Y, Fang Q, Valtchev V. Electroactive covalent organic frameworks: design, synthesis, and applications. Adv Mater 2020;32:e2002038.

209. Li H, Chang J, Li S, et al. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity. J Am Chem Soc 2019;141:13324-9.

210. Li R, Xing G, Li H, Li S, Chen L. A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chem Lett 2023;34:107454.

211. Wang S, Da L, Hao J, et al. A fully conjugated 3D covalent organic framework exhibiting band-like transport with ultrahigh electron mobility. Angew Chem Int Ed Engl 2021;60:9321-5.

212. Yang Y, Mallick S, Izquierdo-Ruiz F, et al. A highly conductive all-carbon linked 3D covalent organic framework film. Small 2021;17:2103152.

213. Zhao X, Chen Y, Wang Z, Zhang Z. Design and application of covalent organic frameworks for ionic conduction. Polym Chem 2021;12:4874-94.

214. Wang S, Li X, Cheng T, et al. Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J Mater Chem A 2022;10:8761-71.

215. Wu M, Huang H, Xu B, Zhang G. Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. RSC Adv 2022;12:16354-7.

216. Fan C, Geng H, Wu H, et al. Three-dimensional covalent organic framework membrane for efficient proton conduction. J Mater Chem A 2021;9:17720-3.

217. Yu X, Li C, Chang J, et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks. Angew Chem Int Ed Engl 2022;61:e202200820.

218. Sun J, Xu Y, Lv Y, Zhang Q, Zhou X. Recent advances in covalent organic framework electrode materials for alkali metal-ion batteries. CCS Chem 2023;5:1259-76.

219. Yu X, Li C, Ma Y, et al. Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Micropor Mesopor Mater 2020;299:110105.

220. Schon TB, Tilley AJ, Kynaston EL, Seferos DS. Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl Mater Interfaces 2017;9:15631-7.

221. Chen R, Zhao J, Yu Z, et al. Post-synthetic fully π-conjugated three-dimensional covalent organic frameworks for high-performance lithium storage. ACS Appl Mater Interfaces 2023;15:830-7.

222. Wang Y, Li M, Wen T, Gu G. A 3D COF constructed by interlayer crosslinking of 2D COF as cathode material for lithium-sulfur batteries. Nanotechnology 2023;34:375402.

223. Li Z, Zhou H, Zhao F, et al. Three-dimensional covalent organic frameworks as host materials for lithium-sulfur batteries. Chin J Polym Sci 2020;38:550-7.

224. Liu W, Gong L, Liu Z, et al. Conjugated three-dimensional high-connected covalent organic frameworks for lithium-sulfur batteries. J Am Chem Soc 2022;144:17209-18.

225. Wu K, Shi X, Yu F, et al. Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Mater 2022;51:391-9.

226. Wu C, Liu Y, Liu H, et al. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J Am Chem Soc 2018;140:10016-24.

227. Biradar MR, Rao CRK, Bhosale SV, Bhosale SV. Flame-retardant 3D covalent organic framework for high-performance symmetric supercapacitors. Energy Fuels 2023;37:4671-81.

228. Chen S, Zhu C, Xian W, et al. Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J Am Chem Soc 2021;143:9415-22.

229. Liu Y, Ren J, Wang Y, et al. A stable luminescent covalent organic framework nanosheet for sensitive molecular recognition. CCS Chem 2023;5:2033-45.

230. Skorjanc T, Shetty D, Valant M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens 2021;6:1461-81.

231. Ding H, Li J, Xie G, et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat Commun 2018;9:5234.

232. Cheng Y, Xin J, Xiao L, et al. A fluorescent three-dimensional covalent organic framework formed by the entanglement of two-dimensional sheets. J Am Chem Soc 2023;145:18737-41.

233. Yuan Y, Ren H, Sun F, et al. Targeted synthesis of a 3D crystalline porous aromatic framework with luminescence quenching ability for hazardous and explosive molecules. J Phys Chem C 2012;116:26431-5.

234. Li WK, Ren P, Zhou YW, Feng JT, Ma ZQ. Europium(III) functionalized 3D covalent organic framework for quinones adsorption and sensing investigation. J Hazard Mater 2020;388:121740.

235. Wu M, Shan Z, Wang J, et al. Three-dimensional covalent organic frameworks based on a π-conjugated tetrahedral node. Chem Commun 2021;57:10379-82.

236. Wang L, Chen Y, Zhang Z, Chen Y, Deng Q, Wang S. Bipyridine-linked three-dimensional covalent organic frameworks for fluorescence sensing of cobalt(II) at nanomole level. Mikrochim Acta 2021;188:167.

237. Wei L, Sun T, Shi Z, et al. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat Commun 2022;13:7936.

238. Chi H, Wang L, Wang S, Liu G. An electrochemiluminescence sensor based on CsPbBr3 -zquantum dots and poly (3-thiophene acetic acid) cross-linked nanogold imprinted layer for the determination of benzo(a)pyrene in edible oils. Food Chem 2023;426:136508.

239. Zhao W, Yu C, Zhao J, et al. 3D hydrazone-functionalized covalent organic frameworks as pH-triggered rotary switches. Small 2021;17:2102630.

240. Fang J, Fu Z, Chen X, et al. Piezochromism in dynamic three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2023;62:e202304234.

241. Liu X, Li J, Gui B, et al. A crystalline three-dimensional covalent organic framework with flexible building blocks. J Am Chem Soc 2021;143:2123-9.

242. Dong X, Yang J, Wang H, et al. Synthesis of thin film of a three-dimensional covalent organic framework as anti-counterfeiting label. Chin J Chem 2022;40:1171-6.

243. Bourda L, Kaczmarek AM, Peng M, et al. Turning 3D covalent organic frameworks into luminescent ratiometric temperature sensors. ACS Appl Mater Interfaces 2023;15:37696-705.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/