REFERENCES

1. Staffell I, Scamman D, Velazquez Abad A, et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 2019;12:463-91.

2. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 2011;88:981-1007.

3. Meyer Q, Zeng Y, Zhao C. In situ and operando characterization of proton exchange membrane fuel cells. Adv Mater 2019;31:e1901900.

4. Ramaswamy N, Mukerjee S. Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer. Chem Rev 2019;119:11945-79.

5. Yang Y, Peltier CR, Zeng R, et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem Rev 2022;122:6117-321.

6. Wang XX, Swihart MT, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal 2019;2:578-89.

7. Li Z, Wang Y, Mu Y, et al. Recent advances in the anode catalyst layer for proton exchange membrane fuel cells. Renew Sustain Energy Rev 2023;176:113182.

8. Wang Z, Sankarasubramanian S, Ramani V. Advances in anion exchange membranes for electrochemical energy conversion. Curr Opin Electrochem 2018;12:240-5.

9. Noh S, Jeon JY, Adhikari S, Kim YS, Bae C. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc Chem Res 2019;52:2745-55.

10. Gao FY, Gao MR. Nickel-based anode catalysts for efficient and affordable anion-exchange membrane fuel cells. Acc Chem Res 2023;56:1445-57.

11. Yang F, Tian X, Luo W, Feng L. Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coordination Chemistry Reviews 2023;478:214980.

12. Luo F, Wagner S, Onishi I, et al. Surface site density and utilization of platinum group metal (PGM)-free Fe-NC and FeNi-NC electrocatalysts for the oxygen reduction reaction. Chem Sci 2020;12:384-96.

13. Dai L, Xue Y, Qu L, Choi HJ, Baek JB. Metal-free catalysts for oxygen reduction reaction. Chem Rev 2015;115:4823-92.

14. Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009;323:760-4.

15. Mu X, Liu S, Chen L, Mu S. Alkaline hydrogen oxidation reaction catalysts: insight into catalytic mechanisms, classification, activity regulation and challenges. Small Structures 2023;4:2200281.

16. Davydova ES, Mukerjee S, Jaouen F, Dekel DR. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal 2018;8:6665-90.

17. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 2014;7:2255-60.

18. Cong Y, Yi B, Song Y. Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts. Nano Energy 2018;44:288-303.

19. Yao ZC, Tang T, Jiang Z, Wang L, Hu JS, Wan LJ. Electrocatalytic hydrogen oxidation in alkaline media: from mechanistic insights to catalyst design. ACS Nano 2022;16:5153-83.

20. Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 1958;54:1053-63.

21. Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc 2005;152:J23.

22. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017;355:eaad4998.

23. Ohyama J, Sato T, Yamamoto Y, Arai S, Satsuma A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J Am Chem Soc 2013;135:8016-21.

24. Lee W, Bera S, Woo H, et al. Controllable size and crystallinity of Ru nanoparticles on a carbon support synthesized by fluidized bed reactor-atomic layer deposition for enhanced hydrogen oxidation activity. J Mater Chem A 2021;9:17223-30.

25. Yang F, Fu L, Cheng G, Chen S, Luo W. Ir-oriented nanocrystalline assemblies with high activity for hydrogen oxidation/evolution reactions in an alkaline electrolyte. J Mater Chem A 2017;5:22959-63.

26. Zhu J, Chen Z, Xie M, et al. Iridium-based cubic nanocages with 1.1-nm-thick walls: a highly efficient and durable electrocatalyst for water oxidation in an acidic medium. Angew Chem Int Ed Engl 2019;58:7244-8.

27. Bu L, Ding J, Guo S, et al. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv Mater 2015;27:7204-12.

28. Wang P, Jiang K, Wang G, Yao J, Huang X. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem Int Ed Engl 2016;55:12859-63.

29. Scofield ME, Zhou Y, Yue S, et al. Role of chemical composition in the enhanced catalytic activity of pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal 2016;6:3895-908.

30. An L, Zhao X, Zhao T, Wang D. Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy Environ Sci 2021;14:2620-38.

31. Liang J, Ma F, Hwang S, et al. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 2019;3:956-91.

32. Zhao R, Yue X, Li Q, Fu G, Lee JM, Huang S. Recent advances in electrocatalysts for alkaline hydrogen oxidation reaction. Small 2021;17:e2100391.

33. Gottesfeld S, Dekel DR, Page M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges. J Power Sources 2018;375:170-84.

34. Mustain WE. Understanding how high-performance anion exchange membrane fuel cells were achieved: Component, interfacial, and cell-level factors. Curr Opin Electrochem 2018;12:233-9.

35. Li D, Chung HT, Maurya S, Matanovic I, Kim YS. Impact of ionomer adsorption on alkaline hydrogen oxidation activity and fuel cell performance. Curr Opin Electrochem 2018;12:189-95.

36. Zeradjanin AR, Vimalanandan A, Polymeros G, Topalov AA, Mayrhofer KJJ, Rohwerder M. Balanced work function as a driver for facile hydrogen evolution reaction - comprehension and experimental assessment of interfacial catalytic descriptor. Phys Chem Chem Phys 2017;19:17019-27.

37. Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 2015;5:13801.

38. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 2016;45:1529-41.

39. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv 2016;2:e1501602.

40. Sheng W, Gasteiger HA, Shao-horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 2010;157:B1529.

41. Tian X, Zhao P, Sheng W. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv Mater 2019;31:e1808066.

42. Elbert K, Hu J, Ma Z, et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized pt shell thickness on the Ru core. ACS Catal 2015;5:6764-72.

43. Montero MA, de Chialvo MRG, Chialvo AC. Evaluation of the kinetic parameters of the hydrogen oxidation reaction on nanostructured iridium electrodes in alkaline solution. J Electroanal Chem 2016;767:153-9.

44. Montero MA, Gennero de Chialvo MR, Chialvo AC. Kinetics of the hydrogen oxidation reaction on nanostructured rhodium electrodes in alkaline solution. J Power Sources 2015;283:181-6.

45. Rheinländer PJ, Herranz J, Durst J, Gasteiger HA. Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J Electrochem Soc 2014;161:F1448-57.

46. Campos-roldán CA, Alonso-vante N. The hydrogen oxidation reaction in alkaline medium: an overview. Electrochem Energ Rev 2019;2:312-31.

47. Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem 1972;39:163-84.

48. Bligaard T, Nørskov J, Dahl S, Matthiesen J, Christensen C, Sehested J. The brønsted–evans–polanyi relation and the volcano curve in heterogeneous catalysis. Journal of Catalysis 2004;224:206-17.

49. Sheng W, Myint M, Chen JG, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 2013;6:1509.

50. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun 2015;6:5848.

51. Zhuang L, Jin J, Abruña HD. Direct observation of electrocatalytic synergy. J Am Chem Soc 2007;129:11033-5.

52. van der Niet MJ, Garcia-araez N, Hernández J, Feliu JM, Koper MT. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catalysis Today 2013;202:105-13.

53. Zheng J, Nash J, Xu B, Yan Y. Perspective-towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J Electrochem Soc 2018;165:H27-9.

54. Giles SA, Wilson JC, Nash J, Xu B, Vlachos DG, Yan Y. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. Journal of Catalysis 2018;367:328-31.

55. Strmcnik D, Uchimura M, Wang C, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 2013;5:300-6.

56. Alia SM, Pivovar BS, Yan Y. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J Am Chem Soc 2013;135:13473-8.

57. Ramaswamy N, Ghoshal S, Bates MK, Jia Q, Li J, Mukerjee S. Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy 2017;41:765-71.

58. Wang YH, Wang XT, Ze H, et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew Chem Int Ed Engl 2021;60:5708-11.

59. Liao J, Ding W, Tao S, et al. Carbon supported IrM (M = Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium. Chin J Catal 2016;37:1142-8.

60. Yang F, Bao X, Gong D, et al. Rhodium phosphide: a new type of hydrogen oxidation reaction catalyst with non-linear correlated catalytic response to pH. ChemElectroChem 2019;6:1990-5.

61. Cong Y, Meng F, Wang X, et al. Uniform PtRu0.6 nanoparticles supported on nitrogen-doped carbon obtained from ZIF-8/GO hybrid with remarkable alkaline hydrogen oxidation activity. J Electron Mater 2023;52:2388-95.

62. Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011;334:1256-60.

63. Danilovic N, Subbaraman R, Strmcnik D, et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed Engl 2012;51:12495-8.

64. Subbaraman R, Tripkovic D, Chang KC, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 2012;11:550-7.

65. Mccrum IT, Koper MTM. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat Energy 2020;5:891-9.

66. Ledezma-yanez I, Wallace WDZ, Sebastián-pascual P, Climent V, Feliu JM, Koper MTM. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy 2017;2:17031.

67. Rebollar L, Intikhab S, Oliveira NJ, et al. “Beyond adsorption” descriptors in hydrogen electrocatalysis. ACS Catal 2020;10:14747-62.

68. Sarabia FJ, Sebastián-Pascual P, Koper MTM, Climent V, Feliu JM. Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media. ACS Appl Mater Interfaces 2019;11:613-23.

69. Chen X, McCrum IT, Schwarz KA, Janik MJ, Koper MTM. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew Chem Int Ed Engl 2017;56:15025-9.

70. Liu E, Li J, Jiao L, et al. Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts. J Am Chem Soc 2019;141:3232-9.

71. Zhang M, de Respinis M, Frei H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 2014;6:362-7.

72. Kornienko N, Resasco J, Becknell N, et al. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc 2015;137:7448-55.

73. Feng Z, Li L, Zheng X, et al. Role of hydroxyl species in hydrogen oxidation reaction: a DFT study. J Phys Chem C 2019;123:23931-9.

74. Li P, Jiang Y, Hu Y, et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat Catal 2022;5:900-11.

75. Lu S, Zhuang Z. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J Am Chem Soc 2017;139:5156-63.

76. Shen L, Lu B, Qu X, et al. Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? Nano Energy 2019;62:601-9.

77. Cong Y, Mccrum IT, Gao X, et al. Uniform Pd 0.33 Ir 0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction. J Mater Chem A 2019;7:3161-9.

78. Jang SW, Dutta S, Kumar A, et al. Holey Pt nanosheets on NiFe-hydroxide laminates: synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 2020;14:10578-88.

79. Wang Y, Chen L, Yu X, Wang Y, Zheng G. Superb alkaline hydrogen evolution and simultaneous electricity generation by pt-decorated Ni 3 N nanosheets. Adv Energy Mater 2017;7:1601390.

80. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 2009;48:60-103.

81. Markovic N, Ross Jr. P. Surface science studies of model fuel cell electrocatalysts. Surface Science Reports 2002;45:117-229.

82. Ma Z, Cano ZP, Yu A, et al. Enhancing oxygen reduction activity of pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew Chem Int Ed Engl 2020;59:18334-48.

83. Stamenkovic V, Mun BS, Mayrhofer KJ, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed Engl 2006;45:2897-901.

84. Hammer B, Nørskov J. Electronic factors determining the reactivity of metal surfaces. Surface Science 1995;343:211-20.

85. Marković NM, Grgur BN, Ross PN. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B 1997;101:5405-13.

86. Schmidt T, Ross P, Markovic N. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes Part 2. The hydrogen evolution/oxidation reaction. J Electroanal Chem 2002;524-5:252-60.

87. Barber J, Conway B. Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm−3 NaOH. J Electroanal Chem 1999;461:80-9.

88. Skúlason E, Tripkovic V, Björketun ME, et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 2010;114:18182-97.

89. Markovića NM, Sarraf ST, Gasteiger HA, Ross PN. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc , Faraday Trans 1996;92:3719-25.

90. Yao Y, He DS, Lin Y, et al. Modulating fcc and hcp ruthenium on the surface of palladium-copper alloy through tunable lattice mismatch. Angew Chem Int Ed Engl 2016;55:5501-5.

91. Cheng H, Yang N, Lu Q, Zhang Z, Zhang H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv Mater 2018;30:e1707189.

92. Wang X, Figueroa-Cosme L, Yang X, et al. Pt-based icosahedral nanocages: using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett 2016;16:1467-71.

93. Chen Y, Fan Z, Luo Z, et al. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv Mater 2017;29:1701331.

94. Li WZ, Liu JX, Gu J, et al. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for fischer-tropsch synthesis. J Am Chem Soc 2017;139:2267-76.

95. Zheng Y, Jiao Y, Zhu Y, et al. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J Am Chem Soc 2016;138:16174-81.

96. Huang JL, Li Z, Duan HH, et al. Formation of hexagonal-close packed (HCP) rhodium as a size effect. J Am Chem Soc 2017;139:575-8.

97. Duan H, Yan N, Yu R, et al. Ultrathin rhodium nanosheets. Nat Commun 2014;5:3093.

98. Fan Z, Bosman M, Huang X, et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat Commun 2015;6:7684.

99. Zheng H, Cao A, Weinberger CR, et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nat Commun 2010;1:144.

100. Guo Q, Zhao Y, Mao WL, Wang Z, Xiong Y, Xia Y. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett 2008;8:972-5.

101. Sun Y, Yang W, Ren Y, Wang L, Lei C. Multiple-step phase transformation in silver nanoplates under high pressure. Small 2011;7:606-11.

102. Wang H, Zhou S, Gilroy KD, Cai Z, Xia Y. Icosahedral nanocrystals of noble metals: Synthesis and applications. Nano Today 2017;15:121-44.

103. Patala S, Marks LD, Olvera de la Cruz M. Thermodynamic analysis of multiply twinned particles: surface stress effects. J Phys Chem Lett 2013;4:3089-94.

104. Vasquez Y, Luo Z, Schaak RE. Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3Fe, Au3Co, and Au3Ni as nanocrystals. J Am Chem Soc 2008;130:11866-7.

105. Bondi JF, Misra R, Ke X, Sines IT, Schiffer P, Schaak RE. Optimized synthesis and magnetic properties of intermetallic Au3Fe1-x, Au3Co1-x, and Au3Ni1- x nanoparticles. Chem Mater 2010;22:3988-94.

106. Wang Y, Peng HC, Liu J, Huang CZ, Xia Y. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett 2015;15:1445-50.

107. Kusada K, Kobayashi H, Yamamoto T, et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J Am Chem Soc 2013;135:5493-6.

108. Zhao T, Xiao D, Chen Y, et al. Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal. J Energy Chem 2021;61:15-22.

109. Li L, Liu C, Liu S, et al. Phase engineering of a ruthenium nanostructure toward high-performance bifunctional hydrogen catalysis. ACS Nano 2022;16:14885-94.

110. Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 2020;16:e1905779.

111. Zhai W, Sakthivel T, Chen F, Du C, Yu H, Dai Z. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. Nanoscale 2021;13:19783-811.

112. Li MX, Sun YT, Wang C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability. Nat Mater 2022;21:165-72.

113. Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018;359:1489-94.

114. He Y, Liu L, Zhu C, et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat Catal 2022;5:212-21.

115. Phan QT, Poon KC, Sato H. A review on amorphous noble-metal-based electrocatalysts for fuel cells: Synthesis, characterization, performance, and future perspective. Int J Hydrogen Energy 2021;46:14190-211.

116. Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 2019;10:4855.

117. Wang S, Fu L, Huang H, et al. Local oxidation induced amorphization of 1.5-nm-thick Pt–Ru nanowires enables superactive and CO-tolerant hydrogen oxidation in alkaline media. Adv Funct Materials 2023;33:2304125.

118. Mayrhofer KJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM. The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 2005;109:14433-40.

119. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Enviro 2005;56:9-35.

120. Zalitis C, Kucernak AR, Sharman J, Wright E. Design principles for platinum nanoparticles catalysing electrochemical hydrogen evolution and oxidation reactions: edges are much more active than facets. J Mater Chem A 2017;5:23328-38.

121. Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 2011;11:3714-9.

122. Shao M, Peles A, Shoemaker K, et al. Enhanced oxygen reduction activity of platinum monolayer on gold nanoparticles. J Phys Chem Lett 2011;2:67-72.

123. Sun Y, Dai Y, Liu Y, Chen S. A rotating disk electrode study of the particle size effects of Pt for the hydrogen oxidation reaction. Phys Chem Chem Phys 2012;14:2278-85.

124. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007;317:100-2.

125. Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJ, Arenz M. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 2011;133:17428-33.

126. Zheng J, Zhuang Z, Xu B, Yan Y. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal 2015;5:4449-55.

127. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 2018;118:4981-5079.

128. Yang JC, Small MW, Grieshaber RV, Nuzzo RG. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem Soc Rev 2012;41:8179-94.

129. Cuenya B, Behafarid F. Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity. Surf Sci Rep 2015;70:135-87.

130. Choi CH, Kim M, Kwon HC, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 2016;7:10922.

131. Yang S, Kim J, Tak YJ, Soon A, Lee H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed Engl 2016;55:2058-62.

132. Kawawaki T, Kataoka Y, Hirata M, et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster. Angew Chem Int Ed Engl 2021;60:21340-50.

133. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 2017;117:8208-71.

134. Duchesne PN, Li ZY, Deming CP, et al. Golden single-atomic-site platinum electrocatalysts. Nat Mater 2018;17:1033-9.

135. Yuan SF, Xu CQ, Liu WD, Zhang JX, Li J, Wang QM. Rod-shaped silver supercluster unveiling strong electron coupling between substituent icosahedral units. J Am Chem Soc 2021;143:12261-7.

136. Yuan P, Zhang R, Selenius E, et al. Solvent-mediated assembly of atom-precise gold-silver nanoclusters to semiconducting one-dimensional materials. Nat Commun 2020;11:2229.

137. Wang X, Zhao L, Li X, et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat Commun 2022;13:1596.

138. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun 2017;8:1070.

139. Yang J, Li WH, Tan S, et al. The electronic metal-support interaction directing the design of single atomic site catalysts: achieving high efficiency towards hydrogen evolution. Angew Chem Int Ed Engl 2021;60:19085-91.

140. Tang T, Ding L, Jiang Z, Hu J, Wan L. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci China Chem 2020;63:1517-42.

141. Meng G, Cao H, Wei T, et al. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem Commun 2022;58:11839-42.

142. Zhang Z, Ni L, Liu H, Zhao Z, Yuan X, Li H. Accelerated kinetics of alkaline hydrogen evolution/oxidation reactions on dispersed ruthenium sites through N and S dual coordination. Sci China Chem 2022;65:611-8.

143. Han L, Ou P, Liu W, et al. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci Adv 2022;8:eabm3779.

144. Zhang Y, Gao F, You H, Li Z, Zou B, Du Y. Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews 2022;450:214244.

145. Shao Q, Lu K, Huang X. Platinum group nanowires for efficient electrocatalysis. Small Methods 2019;3:1800545.

146. Wang W, Lv F, Lei B, Wan S, Luo M, Guo S. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv Mater 2016;28:10117-41.

147. Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021;439:213915.

148. Zhang M, Xu Y, Wang S, et al. Polyethylenimine-modified bimetallic Au@Rh core–shell mesoporous nanospheres surpass Pt for pH-universal hydrogen evolution electrocatalysis. J Mater Chem A 2021;9:13080-6.

149. Liu K, Wang W, Guo P, et al. Replicating the defect structures on ultrathin Rh nanowires with pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv Funct Materials 2019;29:1806300.

150. Liu R, Zhao H, Zhao X, et al. Defect sites in ultrathin Pd Nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ Sci Technol 2018;52:9992-10002.

151. Huang X, Zhao Z, Chen Y, et al. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett 2014;14:3887-94.

152. Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem Rev 2021;121:649-735.

153. Wang M, Wang M, Zhan C, et al. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J Mater Chem A 2022;10:18972-7.

154. Zhang J, Ye J, Fan Q, et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J Am Chem Soc 2018;140:11232-40.

155. Chen Y, Fan Z, Zhang Z, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 2018;118:6409-55.

156. Lyu Z, Zhang X, Liao X, et al. Two-dimensionally assembled Pd–Pt–Ir supernanosheets with subnanometer interlayer spacings toward high-efficiency and durable water splitting. ACS Catal 2022;12:5305-15.

157. Huang X, Tang S, Mu X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 2011;6:28-32.

158. Kong X, Xu K, Zhang C, et al. Free-standing two-dimensional ru nanosheets with high activity toward water splitting. ACS Catal 2016;6:1487-92.

159. Li Y, Cheng C, Han S, et al. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett 2022;7:1187-94.

160. Ling T, Wang JJ, Zhang H, et al. Freestanding ultrathin metallic nanosheets: materials, synthesis, and applications. Adv Mater 2015;27:5396-402.

161. Jiang B, Guo Y, Kim J, et al. Mesoporous metallic iridium nanosheets. J Am Chem Soc 2018;140:12434-41.

162. Xing Y, Yang Y, Li D, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries. Adv Mater 2018;30:e1803124.

163. Zhang J, Fan X, Wang S, et al. Surface engineered Ru2Ni multilayer nanosheets for hydrogen oxidation catalysis. CCS Chem 2023;5:1931-41.

164. Zhang J, Liu X, Ji Y, et al. Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nat Commun 2023;14:1761.

165. Yang C, Li Y, Yue J, Cong H, Luo W. Promoting water formation in sulphate-functionalized Ru for efficient hydrogen oxidation reaction under alkaline electrolytes. Chem Sci 2023;14:6289-94.

166. Pi Y, Zhang N, Guo S, Guo J, Huang X. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett 2016;16:4424-30.

167. Bu L, Tang C, Shao Q, Zhu X, Huang X. Three-dimensional Pd3Pb nanosheet assemblies: high-performance non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal 2018;8:4569-75.

168. Liu L, Akhoundzadeh H, Li M, Huang H. Alloy catalysts for electrocatalytic CO2 reduction. Small Methods 2023;7:e2300482.

169. Chen H, Zhang B, Liang X, Zou X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chin J Catal 2022;43:611-35.

170. Zhang S, Saji SE, Yin Z, Zhang H, Du Y, Yan CH. Rare-earth incorporated alloy catalysts: synthesis, properties, and applications. Adv Mater 2021;33:e2005988.

171. Yu W, Porosoff MD, Chen JG. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 2012;112:5780-817.

172. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 2004;93:156801.

173. Kandoi S, Ferrin PA, Mavrikakis M. Hydrogen on and in selected overlayer near-surface alloys and the effect of subsurface hydrogen on the reactivity of alloy surfaces. Top Catal 2010;53:384-92.

174. Wang H, Yang Y, Disalvo FJ, Abruña HD. Multifunctional electrocatalysts: Ru–M (M = Co, Ni, Fe) for alkaline fuel cells and electrolyzers. ACS Catal 2020;10:4608-16.

175. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci U S A 2011;108:937-43.

176. Nakaya Y, Furukawa S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem Rev 2023;123:5859-947.

177. Ishikawa K, Ohyama J, Okubo K, Murata K, Satsuma A. Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site. ACS Appl Mater Interfaces 2020;12:22771-7.

178. Fu L, Li Y, Yao N, Yang F, Cheng G, Luo W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal 2020;10:7322-7.

179. Gao X, Wang Y, Xie H, Liu T, Chu W. High activity of a Pt decorated Ni/C nanocatalyst for hydrogen oxidation. Chin J Catal 2017;38:396-403.

180. Zhu S, Qin X, Xiao F, et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat Catal 2021;4:711-8.

181. Luo H, Wang K, Lin F, et al. Amorphous MoOx with high oxophilicity interfaced with PtMo alloy nanoparticles boosts anti-CO hydrogen electrocatalysis. Adv Mater 2023;35:e2211854.

182. Zhang T, Walsh AG, Yu J, Zhang P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem Soc Rev 2021;50:569-88.

183. Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc Chem Res 2019;52:237-47.

184. Gao H, Jiang Y, Chen R, et al. Alloyed Pt single-atom catalysts for durable PEM water electrolyzer. Adv Funct Materials 2023;33:2214795.

185. Mao J, He CT, Pei J, et al. Isolated Ni atoms dispersed on ru nanosheets: high-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett 2020;20:3442-8.

186. Cai J, Zhang X, Lyu Z, et al. Host-guest ensemble effect on dual-Pt atom-on-Rh nanosheets enables high-efficiency and anti-CO alkaline hydrogen oxidation. ACS Catal 2023;13:6974-82.

187. Zhou M, Li C, Fang J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem Rev 2021;121:736-95.

188. Zhang B, Fu G, Li Y, et al. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size. Angew Chem Int Ed Engl 2020;59:7857-63.

189. Zhang J, Shen L, Jiang Y, Sun S. Random alloy and intermetallic nanocatalysts in fuel cell reactions. Nanoscale 2020;12:19557-81.

190. Li Q, Wu L, Wu G, et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 2015;15:2468-73.

191. Yan Y, Du JS, Gilroy KD, Yang D, Xia Y, Zhang H. Intermetallic nanocrystals: syntheses and catalytic applications. Adv Mater 2017:29.

192. Alloyeau D, Ricolleau C, Mottet C, et al. Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat Mater 2009;8:940-6.

193. Luo M, Sun Y, Wang L, Guo S. Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Advanced Energy Materials 2017;7:1602073.

194. Zhang J, Zhang L, Cui Z. Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chem Commun 2021;57:11-26.

195. Kuang P, Ni Z, Zhu B, Lin Y, Yu J. Modulating the d-band center enables ultrafine Pt3 Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Adv Mater 2023;35:e2303030.

196. Du XX, He Y, Wang XX, Wang JN. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ Sci 2016;9:2623-32.

197. Lai D, Cheng Q, Zheng Y, et al. A heteronuclear bimetallic organic molecule enabling targeted synthesis of an efficient Pt1Fe1 intermetallic compound for oxygen reduction reaction. J Mater Chem A 2022;10:16639-45.

198. Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000;287:1989-92.

199. Wang XX, Hwang S, Pan YT, et al. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett 2018;18:4163-71.

200. Chung DY, Jun SW, Yoon G, et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J Am Chem Soc 2015;137:15478-85.

201. Jana R, Subbarao U, Peter SC. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol. J Power Sources 2016;301:160-9.

202. Kumar VB, Sanetuntikul J, Ganesan P, Porat Z, Shanmugam S, Gedanken A. Sonochemical formation of Ga-Pt intermetallic nanoparticles embedded in graphene and its potential use as an electrocatalyst. Electrochimica Acta 2016;190:659-67.

203. Heise M, Chang J, Schönemann R, Herrmannsdörfer T, Wosnitza J, Ruck M. Full access to nanoscale bismuth-palladium intermetallics by low-temperature syntheses. Chem Mater 2014;26:5640-6.

204. Cable RE, Schaak RE. Low-temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process. Chem Mater 2005;17:6835-41.

205. Bortoloti F, Garcia A, Angelo A. Electronic effect in intermetallic electrocatalysts with low susceptibility to CO poisoning during hydrogen oxidation. Int J Hydrogen Energy 2015;40:10816-24.

206. Su L, Fan X, Jin Y, Cong H, Luo W. Hydroxyl-binding energy-induced kinetic gap narrowing between acidic and alkaline hydrogen oxidation reaction on intermetallic Ru3Sn7 catalyst. Small 2023;19:e2207603.

207. Zhao Y, Yang F, Zhang W, et al. High-performance Ru2P anodic catalyst for alkaline polymer electrolyte fuel cells. CCS Chem 2022;4:1732-44.

208. Su L, Jin Y, Fan X, Liu Z, Luo W. pH-Dependent binding energy-induced inflection-point behaviors for pH-universal hydrogen oxidation reaction. Sci China Chem 2023;66:3262-8.

209. Huang H, Liu K, Yang F, et al. Breaking surface atomic monogeneity of rh2p nanocatalysts by defect-derived phosphorus vacancies for efficient alkaline hydrogen oxidation. Angew Chem Int Ed Engl 2023;62:e202315752.

210. Su L, Chen J, Yang F, et al. Electric-double-layer origin of the kinetic ph effect of hydrogen electrocatalysis revealed by a universal hydroxide adsorption-dependent inflection-point behavior. J Am Chem Soc 2023;145:12051-8.

211. Deng Y, Tripkovic V, Rossmeisl J, Arenz M. Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catal 2016;6:671-6.

212. Zhao X, Sasaki K. Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Acc Chem Res 2022;55:1226-36.

213. Jiang R, Tung SO, Tang Z, et al. A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction. Energy Storage Mater 2018;12:260-76.

214. Hammer B, Nørskov J. Theoretical surface science and catalysis-calculations and concepts. Impact of Surface Science on Catalysis. Elsevier; 2000. pp. 71-129.

215. Gong T, Alghamdi H, Raciti D, Hall AS. Improved alkaline hydrogen oxidation on strain-modulated Pt overlayers at ordered intermetallic Pt–Sb cores. ACS Energy Lett 2023;8:685-90.

216. Schwämmlein JN, Stühmeier BM, Wagenbauer K, et al. Origin of superior HOR/HER activity of bimetallic Pt-Ru catalysts in alkaline media identified via Ru@Pt core-shell nanoparticles. J Electrochem Soc 2018;165:H229-39.

217. Cai J, Liao X, Li P, et al. Penta-twinned Rh@Pt core-shell nanobranches with engineered shell thickness for reversible and active hydrogen redox electrocatalysis. Chem Eng J 2022;429:132414.

218. Du H, Du Z, Wang T, et al. Unlocking interfacial electron transfer of ruthenium phosphides by homologous core-shell design toward efficient hydrogen evolution and oxidation. Adv Mater 2022;34:e2204624.

219. Luo Z, Zhao G, Pan H, Sun W. Strong metal–support interaction in heterogeneous catalysts. Adv Energy Mater 2022;12:2201395.

220. Sun H, Tung CW, Qiu Y, et al. Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J Am Chem Soc 2022;144:1174-86.

221. Chen J, Zhang Y, Zhang Z, et al. Metal–support interactions for heterogeneous catalysis: mechanisms, characterization techniques and applications. J Mater Chem A 2023;11:8540-72.

222. Kundu MK, Mishra R, Bhowmik T, Barman S. Rhodium metal–rhodium oxide (Rh-Rh2O3) nanostructures with Pt-like or better activity towards hydrogen evolution and oxidation reactions (HER, HOR) in acid and base: correlating its HOR/HER activity with hydrogen binding energy and oxophilicity of the catalyst. J Mater Chem A 2018;6:23531-41.

223. Miller HA, Lavacchi A, Vizza F, et al. A Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew Chem Int Ed Engl 2016;55:6004-7.

224. Singh RK, Davydova ES, Douglin J, et al. Synthesis of CeOx -decorated Pd/C catalysts by controlled surface reactions for hydrogen oxidation in anion exchange membrane fuel cells. Adv Funct Materials 2020;30:2002087.

225. Bhowmik T, Kundu MK, Barman S. Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy. ACS Catal 2016;6:1929-41.

226. Zhou Y, Xie Z, Jiang J, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat Catal 2020;3:454-62.

227. Li Z, Ji S, Liu Y, et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem Rev 2020;120:623-82.

228. Zhu Y, Zhang X, Koh K, et al. Inverse iron oxide/metal catalysts from galvanic replacement. Nat Commun 2020;11:3269.

229. Rodriguez JA, Liu P, Graciani J, et al. Inverse oxide/metal catalysts in fundamental studies and practical applications: a perspective of recent developments. J Phys Chem Lett 2016;7:2627-39.

230. Chen G, Zhao Y, Fu G, et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014;344:495-9.

231. Fu Q, Yang F, Bao X. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc Chem Res 2013;46:1692-701.

232. Lyu Z, Zhang XG, Wang Y, et al. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew Chem Int Ed Engl 2021;60:16093-100.

233. Fu L, Yang F, Hu Y, Li Y, Chen S, Luo W. Discrepant roles of adsorbed OH* species on IrWOx for boosting alkaline hydrogen electrocatalysis. Sci Bull 2020;65:1735-42.

234. Ma M, Li G, Yan W, et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv Energy Mater 2022;12:2103336.

235. Huang Z, Lu R, Zhang Y, et al. A highly efficient pH-universal HOR catalyst with engineered electronic structures of single Pt sites by isolated Co atoms. Adv Funct Materials 2023;33:2306333.

236. Zhou F, Ke X, Chen Y, et al. Electron-distribution control via Pt/NC and MoC/NC dual junction: boosted hydrogen electro-oxidation and theoretical study. J Energy Chem 2024;88:513-20.

237. Zhang Y, Li G, Zhao Z, et al. Atomically isolated Rh sites within highly branched Rh2Sb nanostructures enhance bifunctional hydrogen electrocatalysis. Adv Mater 2021;33:e2105049.

238. Wang H, Abruña HD. Rh and Rh alloy nanoparticles as highly active H2 oxidation catalysts for alkaline fuel cells. ACS Catal 2019;9:5057-62.

239. Su L, Zhao Y, Jin Y, Fan X, Liu Z, Luo W. d–p Orbital hybridization in RhSn catalyst boosts hydrogen oxidation reaction under alkaline electrolyte. J Mater Chem A 2022;10:21856-61.

240. Ming M, Zhang Y, He C, et al. Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019;15:e1903057.

241. Su L, Zhao Y, Yang F, Wu T, Cheng G, Luo W. Ultrafine phosphorus-doped rhodium for enhanced hydrogen electrocatalysis in alkaline electrolytes. J Mater Chem A 2020;8:11923-7.

242. Zhao Y, Wang X, Cheng G, Luo W. Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal 2020;10:11751-7.

243. Jiang J, Tao S, He Q, et al. Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution. J Mater Chem A 2020;8:10168-74.

244. Zhao Y, Wu D, Luo W. Correlating alkaline hydrogen electrocatalysis and hydroxide binding energies on Mo-modified Ru catalysts. ACS Sustainable Chem Eng 2022;10:1616-23.

245. Wang P, Wang C, Yang Y, et al. RuP nanoparticles supported on N, O codoped porous hollow carbon for efficient hydrogen oxidation reaction. Adv Materials Inter 2022;9:2102193.

246. Wang J, Liu J, Zhang B, et al. Amine-ligand modulated ruthenium nanoclusters as a superior bi-functional hydrogen electrocatalyst in alkaline media. J Mater Chem A 2021;9:22934-42.

247. Xue Y, Shi L, Liu X, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat Commun 2020;11:5651.

248. Liu D, Lu S, Xue Y, et al. One-pot synthesis of IrNi@Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte. Nano Energy 2019;59:26-32.

249. Ji X, Chen P, Liu Y, et al. Ir/Ni–NiO/CNT composites as effective electrocatalysts for hydrogen oxidation. J Mater Chem A 2023;11:5076-82.

250. Liu D, Luo Z, Zhang B, et al. Tailoring interfacial charge transfer of epitaxially grown Ir clusters for boosting hydrogen oxidation reaction. Adv Energy Mater 2023;13:2202913.

251. Su L, Zhao Y, Jin Y, Liu Z, Cui H, Luo W. Identifying the role of hydroxyl binding energy in a non-monotonous behavior of Pd-Pd4S for hydrogen oxidation reaction. Adv Funct Materials 2022;32:2113047.

252. Qin B, Yu H, Jia J, et al. A novel IrNi@PdIr/C core-shell electrocatalyst with enhanced activity and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells. Nanoscale 2018;10:4872-81.

253. Qiu Y, Xin L, Li Y, et al. BCC-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J Am Chem Soc 2018;140:16580-8.

254. Pang B, Jia C, Wang S, et al. Self-optimized ligand effect of single-atom modifier in ternary pt-based alloy for efficient hydrogen oxidation. Nano Lett 2023;23:3826-34.

255. Hamo ER, Singh RK, Douglin JC, et al. Carbide-supported PtRu catalysts for hydrogen oxidation reaction in alkaline electrolyte. ACS Catal 2021;11:932-47.

256. Zhang J, Qu X, Shen L, et al. Engineering the near-surface of PtRu3 nanoparticles to improve hydrogen oxidation activity in alkaline electrolyte. Small 2021;17:e2006698.

257. Jin Y, Chen F, Wang J, Guo L, Jin T, Liu H. Lamellar platinum-rhodium aerogels with superior electrocatalytic performance for both hydrogen oxidation and evolution reaction in alkaline environment. J Power Sources 2019;435:226798.

258. Zhan C, Xu Y, Bu L, et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat Commun 2021;12:6261.

259. Pan Z, An L, Zhao T, Tang Z. Advances and challenges in alkaline anion exchange membrane fuel cells. Progress in Energy and Combustion Science 2018;66:141-75.

260. Pinaud BA, Bonakdarpour A, Daniel L, Sharman J, Wilkinson DP. Key considerations for high current fuel cell catalyst testing in an electrochemical half-cell. J Electrochem Soc 2017;164:F321-7.

261. Chung HT, Martinez U, Matanovic I, Kim YS. Cation-hydroxide-water coadsorption inhibits the alkaline hydrogen oxidation reaction. J Phys Chem Lett 2016;7:4464-9.

262. Maurya S, Fujimoto CH, Hibbs MR, Narvaez Villarrubia C, Kim YS. Toward improved alkaline membrane fuel cell performance using quaternized aryl-ether free polyaromatics. Chem Mater 2018;30:2188-92.

263. Maurya S, Dumont JH, Villarrubia CN, et al. Surface adsorption affects the performance of alkaline anion-exchange membrane fuel cells. ACS Catal 2018;8:9429-39.

264. Yassin K, Douglin JC, Rasin IG, et al. The effect of membrane thickness on AEMFC Performance: an integrated theoretical and experimental study. Energy Convers Manage 2022;270:116203.

265. Dekel DR. Unraveling mysteries of hydrogen electrooxidation in anion exchange membrane fuel cells. Curr Opin Electrochem 2018;12:182-8.

266. León MI, Valentín-reyes J, Romero-castañón T, Beltrán J, Flores-hernández JR, Nava JL. Water movement through an anion exchange membrane fuel cell (AEMFC): Influence of gas humidity and flow rate. Appl Energy 2022;324:119722.

267. Ni W, Wang T, Schouwink PA, Chuang YC, Chen HM, Hu X. Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles. Angew Chem Int Ed Engl 2020;59:10797-801.

268. Alesker M, Page M, Shviro M, et al. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. J Power Sources 2016;304:332-9.

269. Omasta TJ, Peng X, Miller HA, et al. Beyond 1.0 W cm−2 performance without platinum: the beginning of a new era in anion exchange membrane fuel cells. J Electrochem Soc 2018;165:J3039-44.

270. Miller HA, Vizza F, Marelli M, et al. Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy 2017;33:293-305.

271. Wang Y, Wang G, Li G, et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ Sci 2015;8:177-81.

272. Li Q, Peng H, Wang Y, Xiao L, Lu J, Zhuang L. The comparability of Pt to Pt-Ru in catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80 °C. Angew Chem Int Ed Engl 2019;58:1442-6.

273. Cong Y, Chai C, Zhao X, Yi B, Song Y. Pt 0.25 Ru 0.75 /N-C as highly active and durable electrocatalysts toward alkaline hydrogen oxidation reaction. Adv Materials Inter 2020;7:2000310.

274. Ni W, Meibom JL, Hassan NU, et al. Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nat Catal 2023;6:773-83.

275. Wang R, Li D, Maurya S, et al. Ultrafine Pt cluster and RuO2 heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horiz 2020;5:316-24.

276. Zhao T, Li M, Xiao D, et al. Pseudo-Pt monolayer for robust hydrogen oxidation. J Am Chem Soc 2023;145:4088-97.

277. Qin B, Yu H, Gao X, et al. Ultrathin IrRu nanowire networks with high performance and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells. J Mater Chem A 2018;6:20374-82.

278. Miller HA, Pagliaro MV, Bellini M, et al. Integration of a Pd-CeO2 /C anode with Pt and Pt-free cathode catalysts in high power density anion exchange membrane fuel cells. ACS Appl Energy Mater 2020;3:10209-14.

279. Ogada JJ, Ipadeola AK, Mwonga PV, et al. CeO2 modulates the electronic states of a palladium onion-like carbon interface into a highly active and durable electrocatalyst for hydrogen oxidation in anion-exchange-membrane fuel cells. ACS Catal 2022;12:7014-29.

280. Ohyama J, Sato T, Satsuma A. High performance of Ru nanoparticles supported on carbon for anode electrocatalyst of alkaline anion exchange membrane fuel cell. J Power Sources 2013;225:311-5.

281. Zeng L, Peng H, Liu W, et al. Extraordinary activity of mesoporous carbon supported Ru toward the hydrogen oxidation reaction in alkaline media. J Power Sources 2020;461:228147.

282. Tatus-Portnoy Z, Kitayev A, Vineesh TV, Tal-Gutelmacher E, Page M, Zitoun D. A low-loading Ru-rich anode catalyst for high-power anion exchange membrane fuel cells. Chem Commun 2020;56:5669-72.

283. Yang C, Li Y, Ge C, et al. The role of hydroxide binding energy in alkaline hydrogen oxidation reaction kinetics on RuCr nanosheet. Chin J Chem 2022;40:2495-501.

284. Li Y, Yang C, Ge C, et al. Electronic modulation of Ru nanosheet by d-d orbital coupling for enhanced hydrogen oxidation reaction in alkaline electrolytes. Small 2022;18:e2202404.

285. Han P, Yang X, Wu L, et al. A highly-efficient boron interstitially inserted Ru anode catalyst for anion exchange membrane fuel cells. Adv Mater 2023:e2304496.

286. Peng X, Kulkarni D, Huang Y, et al. Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nat Commun 2020;11:3561.

287. Lin XM, Wang XT, Deng YL, et al. In situ probe of the hydrogen oxidation reaction intermediates on PtRu a bimetallic catalyst surface by core-shell nanoparticle-enhanced raman spectroscopy. Nano Lett 2022;22:5544-52.

288. Song F, Li W, Yang J, et al. Interfacial sites between cobalt nitride and cobalt act as bifunctional catalysts for hydrogen electrochemistry. ACS Energy Lett 2019;4:1594-601.

289. Xiong B, Zhao W, Chen L, Shi J. One-step synthesis of W2C@N,P-C nanocatalysts for efficient hydrogen electrooxidation across the whole pH range. Adv Funct Materials 2019;29:1902505.

290. Feng M, Huang J, Peng Y, Huang C, Yue X, Huang S. Tuning the electronic structures of cobalt-molybdenum bimetallic carbides to boost the hydrogen oxidation reaction in alkaline medium. Chem Eng J 2022;428:131206.

291. Kabir S, Lemire K, Artyushkova K, et al. Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells. J Mater Chem A 2017;5:24433-43.

292. Ni W, Wang T, Héroguel F, et al. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat Mater 2022;21:804-10.

293. Gao Y, Yang Y, Schimmenti R, et al. A completely precious metal-free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proc Natl Acad Sci U S A 2022;119:e2119883119.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/