REFERENCES

1. Pohlmann S. Metrics and methods for moving from research to innovation in energy storage. Nat Commun 2022;13:1538.

2. Ding Y, Li Y, Dai Y, et al. A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy 2021;216:119227.

3. Gogoi D, Makkar P, Das MR, Ghosh NN. CoFe2O4 nanoparticle decorated hierarchical biomass derived porous carbon based nanocomposites for high-performance all-solid-state flexible asymmetric supercapacitor devices. ACS Appl Electron Mater 2022;4:795-806.

4. Bhosale R, Bhosale S, Chavan V, Jambhale C, Kim D, Kolekar S. hybrid supercapacitors based on nanoporous carbon and CoFe2O4 derived from a bimetallic organic framework. ACS Appl Nano Mater 2024;7:2244-57.

5. Hu B, Xu J, Fan Z, et al. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv Energy Mater 2023;13:2203540.

6. Wang J, Xi L, Pneg C, et al. Recent progress in hard carbon anodes for sodium-ion batteries. Adv Eng Mater 2024;26:2302063.

7. Chen J, Adit G, Li L, Zhang Y, Chua DHC, Lee PS. Optimization strategies toward functional sodium-ion batteries. Energy Environ Mater 2023;6:e12633.

8. Wu X, Zhao Y, Li H, Zhou C, Wang X, Du L. Sulfurized polyacrylonitrile as cathodes for advanced lithium-sulfur batteries: advances in modification strategies. Nanoscale 2024;16:5060-78.

9. Han J, Varzi A, Passerini S. The emergence of aqueous ammonium-ion batteries. Angew Chem Int Ed 2022;61:e202115046.

10. Geng X, Hou X, He X, Fan HJ. Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv Energy Mater 2024;14:2304094.

11. Kao C, Liu J, Ye C, Zhang S, Hao J, Qiao S. Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries. J Mater Chem A 2023;11:23881-7.

12. Yi M, Jing M, Yang Y, et al. Recent developments of carbon dots for advanced zinc-based batteries: a review. Adv Funct Mater 2024.

13. Du B, Shi X, Zhu H, et al. Preparation and characterization of bifunctional wolfsbane-like magnetic Fe3O4 nanoparticles-decorated lignin-based carbon nanofibers composites for electromagnetic wave absorption and electrochemical energy storage. Int J Biol Macromol 2023;246:125574.

14. Jain A, Michalska M, Zaszczyńska A, Denis P. Surface modification of activated carbon with silver nanoparticles for electrochemical double layer capacitors. J Energy Storage 2022;54:105367.

15. Liao Z, Su HY, Cheng J, Sun GT, Zhu L, Zhu MQ. CoFe2O4- mesoporous carbons derived from Eucommia ulmoides wood for supercapacitors: comparison of two activation method and composite carbons material synthesis method. Ind Crop Prod 2021;171:113861.

16. Sun L, Gong Y, Li D, Pan C. Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem 2022;24:3864-94.

17. Qin H, Liu P, Chen C, Cong HP, Yu SH. A multi-responsive healable supercapacitor. Nat Commun 2021;12:4297.

18. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 2021;403:126352.

19. Kumari R, Kumar Sharma S, Singh V, Ravi Kant C. Facile, two-step synthesis of activated carbon soot from used soybean oil and waste engine oil for supercapacitor electrodes. Mater Today Proceed 2022;67:483-9.

20. Luo N, Wang J, Zhang D, et al. Inorganic nanoparticle-enhanced double-network hydrogel electrolytes for supercapacitor with superior low-temperature adaptability. Chem Eng J 2024;479:147741.

21. He Q, He R, Zia A, et al. Self-promoting energy storage in balsa wood-converted porous carbon coupled with carbon nanotubes. Small 2022;18:2200272.

22. Shah SS, Aziz MA, Rasool PI, et al. Electrochemical synergy and future prospects: advancements and challenges in MXene and MOFs composites for hybrid supercapacitors. Sustain Mater Technol 2024;39:e00814.

23. Rohith R, Prasannakumar AT, Manju V, Mohan RR, Varma SJ. Flexible, symmetric supercapacitor using self-stabilized dispersion-polymerised polyaniline/V2O5 hybrid electrodes. Chem Eng J 2023;467:143499.

24. Duan G, Zhang H, Zhang C, Jiang S, Hou H. High mass-loading α-Fe2O3 nanoparticles anchored on nitrogen-doped wood carbon for high-energy-density supercapacitor. Chin Chem Lett 2023;34:108283.

25. Zhang X, Yan G, Li Z, et al. Self-supported heterojunction nanofibrous membranes for high-performance flexible asymmetric capacitors. Appl Surf Sci 2024;648:159059.

26. Sharifi S, Rahimi K, Yazdani A. Largely enhanced pseudocapacitance by a facile in-situ decoration of MoS2 nanosheets with CoFe2O4 nanoparticles. J Energy Storage 2023;72:108499.

27. Xia C, Ren T, Darabi R, et al. Spotlighting the boosted energy storage capacity of CoFe2O4/GRaphene nanoribbons: a promising positive electrode material for high-energy-density asymmetric supercapacitor. Energy 2023;270:126914.

28. He C, Huang M, Zhao L, et al. Enhanced electrochemical performance of porous carbon from wheat straw as remolded by hydrothermal processing. Sci Total Environ 2022;842:156905.

29. Qu Q, Qiu L, Li M, Sun G, Chen H, Guo X. Synergistic effects of pyrolysis temperature, iron ion concentration and solid/liquid ratio on the properties and Cr(VI) removal performance of magnetic carbon. J Water Process Eng 2023;53:103785.

30. Bian Z, Wang H, Zhao X, et al. Optimized mesopores enable enhanced capacitance of electrochemical capacitors using ultrahigh surface area carbon derived from waste feathers. J Colloid Interface Sci 2023;630:115-26.

31. Aydın H, Kurtan Ü, Üstün B, Koç SN. One-pot synthesis of cobalt pyrophosphate nanoparticles combined with mesoporous carbon for asymmetric supercapacitors. Mater Chem Phys 2022;290:126392.

32. Chen X, Sawut N, Chen K, et al. Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ Sci 2023;16:4041-53.

33. Zhu L, Wang Q, Wang H, Zhao F, Li D. One-step chemical activation facilitates synthesis of activated carbons from Acer truncatum seed shells for premium capacitor electrodes. Ind Crop Prod 2022;187:115458.

34. Guo T, Zhou D, Pang L, Sun S, Zhou T, Su J. Perspectives on working voltage of aqueous supercapacitors. Small 2022;18:e2106360.

35. Krishnamoorthy K, Pazhamalai P, Mariappan VK, Nardekar SS, Sahoo S, Kim SJ. Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat Commun 2020;11:2351.

36. Liang Z, Hong Z, Xie M, Gu D. Recent progress of mesoporous carbons applied in electrochemical catalysis. New Carbon Mater 2022;37:152-79.

37. Cui J, Zhang Y, Cao Z, et al. Nanoporous carbon nanowires derived from one-dimensional metal-organic framework core-shell hybrids for enhanced electrochemical energy storage. Appl Surf Sci 2022;576:151800.

38. Piwek J, Slesinski A, Fic K, et al. High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochim Acta 2022;424:140649.

39. Das A, Girija Shankar E, Ramulu B, Su Yu J. Electrochemical performance of asymmetric supercapacitor with binder-free CoxMn3-xSe4 and radish-derived carbon electrodes using K3[Fe(CN)6] additive in electrolyte. Chem Eng J 2022;448:137725.

40. Kolanowski Ł, Graś-ligocka M, Krawczyk P, Buchwald T, Lota K, Lota G. Ozonation with ammoxidation as a method of obtaining O, N-doped carbon electrode material to electrochemical capacitors. Electrochim Acta 2022;413:140130.

41. Gan G, Fan S, Li X, et al. Effects of oxygen functional groups on electrochemical performance of carbon materials for dechlorination of 1,2-dichloroethane to ethylene. Chem Eng J 2022;434:134547.

42. Benoy SM, Pandey M, Bhattacharjya D, Saikia BK. Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. J Energy Storage 2022;52:104938.

43. Mazzucato M, Isse AA, Durante C. Dissociative electron transfer mechanism and application in the electrocatalytic activation of organic halides. Curr Opin Electrochem 2023;39:101254.

44. Madhu R, Periasamy AP, Schlee P, Hérou S, Titirici M. Lignin: A sustainable precursor for nanostructured carbon materials for supercapacitors. Carbon 2023;207:172-97.

45. Xu M, Zhu X, Lai Y, et al. Production of hierarchical porous bio‑carbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor. Appl Energy 2024;353:122095.

46. Ortiz-olivares RD, Lobato-peralta DR, Arias D, et al. Production of nanoarchitectonics corncob activated carbon as electrode material for enhanced supercapacitor performance. J Energy Storage 2022;55:105447.

47. Rimal V, Kumar Srivastava P. Review on electrochemical kinetics of carbon dots. Mater Today Proceed 2022;68:2691-4.

48. Xing F, Bi Z, Su F, Liu F, Wu Z. Unraveling the design principles of battery-supercapacitor hybrid devices: from fundamental mechanisms to microstructure engineering and challenging perspectives. Adv Energy Mater 2022;12:2200594.

49. Wang M, Yang J, Liu S, et al. Nitrogen-doped porous carbon electrode for aqueous iodide redox supercapacitor. Chem Eng J 2023;451:138501.

50. Sekhar SC, Ramulu B, Arbaz SJ, Hussain SK, Yu JS. One-pot hydrothermal-derived NiS2-CoMo2S4 with vertically aligned nanorods as a binder-free electrode for coin-cell-type hybrid supercapacitor. Small Methods 2021;5:e2100335.

51. Zardkhoshoui A, Ameri B, Saeed Hosseiny Davarani S. Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors. Chem Eng J 2022;435:135170.

52. Huang Z, Jiang J, Li W, et al. Stabilizing sulfur doped manganese oxide active sites with phosphorus doped hierarchical nested square carbon for efficient asymmetric supercapacitor. Chem Eng J 2023;468:143574.

53. Chen R, Tang H, He P, et al. Interface engineering of biomass-derived carbon used as ultrahigh-energy-density and practical mass-loading supercapacitor electrodes. Adv Funct Mater 2023;33:2212078.

54. Wei Y, Zhou J, Yang L, Gu J, Chen Z, He X. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials. New Carbon Mater 2022;37:707-15.

55. Li P, Feng C, Li H, Zhang X, Zheng X. Facile fabrication of carbon materials with hierarchical porous structure for high-performance supercapacitors. J Alloy Compd 2021;851:156922.

56. Chang C, Li M, Niu P, Zhang L, Wang S. A facile dual-functional hydrothermal-assisted synthesis strategy of hierarchical porous carbon for enhanced supercapacitor performance. Sustain Mater Technol 2021;28:e00265.

57. Farma R, Tania Y, Apriyani I. Conversion of hazelnut seed shell biomass into porous activated carbon with KOH and CO2 activation for supercapacitors. Mater Today Proceed 2023;87:51-6.

58. He W, Li J, Zhang Y, Yang J, Zeng T, Yang N. High-performance supercapacitors using hierarchical and sulfur-doped trimetallic NiCo/NiMn layered double hydroxides. Small Methods 2023:e2301167.

59. Ahmad T, Murtaza, Shah SS, et al. Preparation and electrochemical performance of convolvulus arvensis-derived activated carbon for symmetric supercapacitors. Mater Sci Eng B 2023;292:116430.

60. Zhang W, Li W, Li S. Self-template activated carbons for aqueous supercapacitors. Sustain Mater Technol 2023;36:e00582.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/