REFERENCES

1. Haider R, Wen Y, Ma ZF, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem Soc Rev 2021;50:1138-87.

2. Wee JH. Applications of proton exchange membrane fuel cell systems. Renew Sustain Energy Rev 2007;11:1720-38.

3. Pan Z, Chen R, An L, Li Y. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals. J Power Sources 2017;365:430-45.

4. Si F, Liu S, Liang Y, Fu XZ, Zhang J, Luo JL. Fuel cell reactors for the clean cogeneration of electrical energy and value-added chemicals. Electrochem Energy Rev 2022;5:25.

5. Liu S, Liu Q, Fu XZ, Luo JL. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles. Appl Catal B Environ 2018;220:283-9.

6. Antolini E. Low molecular weight alkane-fed solid oxide fuel cells for power and chemicals cogeneration. J Energy Chem 2023;80:711-35.

7. Alcaide F, Cabot PL, Brillas E. Fuel cells for chemicals and energy cogeneration. J Power Sources 2006;153:47-60.

8. Heng Z, Yuan X, Yin Y, Ma Z. Fuel cells reactor for chemicals and electric energy cogeneration. J Electrochem 2018;24:615-27.

9. de Souza RFB, Florio DZ, Antolini E, Neto AO. Partial methane oxidation in fuel cell-type reactors for co-generation of energy and chemicals: a short review. Catalysts 2022;12:217.

10. Kishi R, Ogihara H, Yoshida-Hirahara M, Shibanuma K, Yamanaka I, Kurokawa H. Green synthesis of methyl formate via electrolysis of pure methanol. ACS Sustain Chem Eng 2020;8:11532-40.

11. Rodríguez-Gómez A, Dorado F, de Lucas-consuegra A, de la Osa AR. Influence of Pt/Ru anodic ratio on the valorization of ethanol by PEM electrocatalytic reforming towards value-added products. J Energy Chem 2021;56:264-75.

12. Kawaguchi D, Ogihara H, Kurokawa H. Upgrading of ethanol to 1,1-diethoxyethane by proton-exchange membrane electrolysis. ChemSusChem 2021;14:4431-8.

13. Rodríguez-gómez A, Dorado F, Sánchez P, de la Osa AR. Boosting hydrogen and chemicals production through ethanol electro-reforming on Pt-transition metal anodes. J Energy Chem 2022;70:394-406.

14. Lee B, Hibino T. Efficient and selective formation of methanol from methane in a fuel cell-type reactor. J Catal 2011;279:233-40.

15. Iguchi S, Kataoka M, Hoshino R, Yamanaka I. Direct epoxidation of propylene with water at a PtOx anode using a solid-polymer-electrolyte electrolysis cell. Catal Sci Technol 2022;12:469-73.

16. Yang CH, Liu XC, Li Y, et al. Selective conversion of propane by electrothermal catalysis in proton exchange membrane fuel cell. ChemSusChem 2023:e202300699.

17. Kuramochi N, Yoshida-hirahara M, Ogihara H, Kurokawa H. Proton exchange membrane electrolysis of methanol for simultaneously synthesizing formaldehyde and hydrogen. Sustain Energy Fuels 2023;7:778-85.

18. Serrano-jiménez J, de la Osa A, Rodríguez-gómez A, Sánchez P, Romero A, de Lucas-consuegra A. Graphene-like materials as an alternative to carbon Vulcan support for the electrochemical reforming of ethanol: towards a complete optimization of the anodic catalyst. J Electroanal Chem 2022;921:116680.

19. Abdelnasser S, Hakamata T, Ogihara H, Kurokawa H. Electrochemical oxidation of 1-propanol through proton exchange membrane electrolysis. J Electroanal Chem 2023;928:117009.

20. Abdelnasser S, Matsushita H, Kurokawa H, Ogihara H. Effect of nafion ionomer on proton exchange membrane electrolysis of benzyl alcohol. Chem Lett 2023;52:560-3.

21. Yi Y, Wang L, Li G, Guo H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal Sci Technol 2016;6:1593-610.

22. Gutiérrez-guerra N, Valverde J, Romero A, Serrano-ruiz J, de Lucas-consuegra A. Electrocatalytic conversion of CO2 to added-value chemicals in a high-temperature proton-exchange membrane reactor. Electrochem Commun 2017;81:128-31.

23. Ju HK, Kaur G, Kulkarni AP, Giddey S. Challenges and trends in developing technology for electrochemically reducing CO2 in solid polymer electrolyte membrane reactors. J CO2 Util 2019;32:178-86.

24. Garcia LMS, Filho NGP, Chair K, et al. Methanol electrosynthesis from CO2 reduction reaction in polymer electrolyte reactors - fuel cell type using [6,6′-(2,2′-bipyridine-6,6′-diyl)bis(1,3,5-triazine-2,4-diamine)] (dinitrate-O) copper (II) complex. Mater Today Sustain 2022;19:100177.

25. Inami Y, Ogihara H, Yamanaka I. Effects of carbon supports on Ru electrocatalysis for the electrohydrogenation of toluene to methylcyclohexane. Electrocatalysis 2018;9:204-11.

26. Inami Y, Ogihara H, Nagamatsu S, Asakura K, Yamanaka I. Synergy of Ru and Ir in the electrohydrogenation of toluene to methylcyclohexane on a ketjenblack-supported Ru-Ir alloy cathode. ACS Catal 2019;9:2448-57.

27. Nogami S, Nagasawa K, Fukazawa A, Tanaka K, Mitsushima S, Atobe M. Highly selective and efficient electrocatalytic semihydrogenation of diphenylacetylene in a PEM reactor with Pt-Pd alloy cathode catalysts. J Electrochem Soc 2020;167:155506.

28. Nogami S, Shida N, Iguchi S, et al. Mechanistic insights into the electrocatalytic hydrogenation of alkynes on Pt-Pd electrocatalysts in a proton-exchange membrane reactor. ACS Catal 2022;12:5430-40.

29. Fukazawa A, Shimizu Y, Shida N, Atobe M. Electrocatalytic hydrogenation of benzoic acids in a proton-exchange membrane reactor. Org Biomol Chem 2021;19:7363-8.

30. Mitsudo K, Inoue H, Niki Y, Sato E, Suga S. Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility. Beilstein J Org Chem 2022;18:1055-61.

31. Shimizu Y, Harada J, Fukazawa A, et al. Diastereoselective electrocatalytic hydrogenation of cyclic ketones using a proton-exchange membrane reactor: a step toward the electrification of fine-chemical production. ACS Energy Lett 2023;8:1010-7.

32. Nandenha J, Piasentin RM, Silva LMG, Fontes EH, Neto AO, de Souza RFB. Partial oxidation of methane and generation of electricity using a PEMFC. Ionics 2019;25:5077-82.

33. Coelho JF, Filho NGP, Gutierrez IM, et al. Methane-to-methanol conversion and power co-generation on palladium: nickel supported on antimony tin oxide catalysts in a polymeric electrolyte reactor-fuel cell (PER-FC). Res Chem Intermed 2022;48:5155-68.

34. Li W, Bonakdarpour A, Gyenge E, Wilkinson DP. Design of bifunctional electrodes for co-generation of electrical power and hydrogen peroxide. J Appl Electrochem 2018;48:985-93.

35. Yuan XZ, Ma ZF, Jiang QZ, Wu WS. Cogeneration of cyclohexylamine and electrical power using PEM fuel cell reactor. Electrochem Commun 2001;3:599-602.

36. Buzzo G, Rodrigues A, De Souza R, et al. Synthesis of hydroquinone with co-generation of electricity from phenol aqueous solution in a proton exchange membrane fuel cell reactor. Catal Commun 2015;59:113-5.

37. Ahmed S, Tao Z, Zhang H, et al. Review on chitosan and two-dimensional MoS2-based proton exchange membrane for fuel cell application: advances and perspectives. Energy Fuels 2023;37:1699-730.

38. Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the electrode challenges of high-temperature proton exchange membrane fuel cells. Electrochem Energy Rev 2023;6:16.

39. Cha JE, Cho WJ, Hwang J, Seo DJ, Choi YW, Kim WB. Fuel cell performance improvement via the steric effect of a hydrocarbon-based binder for cathode in proton exchange membrane fuel cells. Sci Rep 2022;12:14001.

40. Liu M, Hu H, Kong Y, et al. The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: a Fumion vs. Nafion comparison. Appl Catal B Environ 2023;335:122885.

41. Wang L, Bevilacqua M, Chen YX, et al. Enhanced electro-oxidation of alcohols at electrochemically treated polycrystalline palladium surface. J Power Sources 2013;242:872-6.

42. Zaman S, Wang M, Liu H, et al. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends Chem 2022;4:886-906.

43. Rodríguez-gómez A, Lepre E, Dorado F, Sanchez-silva L, Lopez-salas N, de la Osa AR. Efficient ethanol electro-reforming on bimetallic anodes supported on adenine-based noble carbons: hydrogen production and value-added chemicals. Mater Today Energy 2023;32:101231.

44. Zhao J, Liu H, Li X. Structure, property, and performance of catalyst layers in proton exchange membrane fuel cells. Electrochem Energ Rev 2023;6:13.

45. Rodríguez-gómez A, Dorado F, de Lucas-consuegra A, de la Osa AR. Influence of the GDL and assembly mode of a PEM cell on the ethanol revalorization into chemicals. Chem Eng J 2020;402:125298.

46. Yamanaka I, Onisawa T, Hashimoto T, Murayama T. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H2 and O2. ChemSusChem 2011;4:494-501.

47. Oh LS, Han J, Lim E, Kim WB, Kim HJ. PtCu nanoparticle catalyst for electrocatalytic glycerol oxidation: how does the PtCu affect to glycerol oxidation reaction performance by changing pH conditions? Catalysts 2023;13:892.

48. Rodríguez-gómez A, Dorado F, de Lucas-consuegra A, de la Osa AR. Additional pathways for the ethanol electro-reforming knowledge: the role of the initial concentration on the product yields. Fuel Process Technol 2021;222:106954.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/