REFERENCES
1. Yan P, Xiao C, Xu L, et al. Biomass energy in China’s terrestrial ecosystems: insights into the nation’s sustainable energy supply. Renew Sust Energy Rev 2020;127:109857.
2. Balat M, Ayar G. Biomass energy in the world, use of biomass and potential trends. Energy Sources 2005;27:931-40.
3. Ning P, Yang G, Hu L, et al. Recent advances in the valorization of plant biomass. Biotechnol Biofuels 2021;14:102.
4. Li C, Li J, Qin L, Yang P, Vlachos DG. Recent advances in the photocatalytic conversion of biomass-derived furanic compounds. ACS Catal 2021;11:11336-59.
5. Toe CY, Tsounis C, Zhang J, et al. Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy Environ Sci 2021;14:1140-75.
6. Huang Z, Luo N, Zhang C, Wang F. Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022;6:197-214.
7. Xia B, Zhang Y, Shi B, Ran J, Davey K, Qiao S. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods 2020;4:2000063.
8. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 2017;46:337-65.
9. Li C, Naghadeh SB, Guo L, Xu K, Zhang JZ, Wang H. Cellulose as sacrificial biomass for photocatalytic hydrogen evolution over one-dimensional CdS loaded with NiS2 as a cocatalyst. ChemistrySelect 2020;5:1470-7.
10. Zhong N, Yu X, Zhao H, Hu J, Gates ID. Biomass photoreforming for hydrogen production over hierarchical 3DOM TiO2-Au-CdS. Catalysts 2022;12:819.
11. Augustin A, Chuaicham C, Shanmugam M, et al. Recent development of organic-inorganic hybrid photocatalysts for biomass conversion into hydrogen production. Nanoscale Adv 2022;4:2561-82.
12. Nwosu U, Wang A, Palma B, et al. Selective biomass photoreforming for valuable chemicals and fuels: a critical review. Renew Sust Energy Rev 2021;148:111266.
13. Shi C, Kang F, Zhu Y, et al. Photoreforming lignocellulosic biomass for hydrogen production: optimized design of photocatalyst and photocatalytic system. Chem Eng J 2023;452:138980.
14. Ma J, Liu K, Yang X, et al. Recent advances and challenges in photoreforming of biomass-derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride photocatalysts. ChemSusChem 2021;14:4903-22.
15. Liu X, Duan X, Wei W, Wang S, Ni B. Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chem 2019;21:4266-89.
16. Isikgor FH, Becer CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 2015;6:4497-559.
17. Yuan Y, Jiang B, Chen H, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol Biofuels 2021;14:205.
18. Jensen CU, Rodriguez Guerrero JK, Karatzos S, Olofsson G, Iversen SB. Fundamentals of HydrofactionTM: renewable crude oil from woody biomass. Biomass Conv Bioref 2017;7:495-509.
19. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv 2011;29:675-85.
20. Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 2011;4:3913.
21. Chew J, Doshi V. Recent advances in biomass pretreatment - torrefaction fundamentals and technology. Renew Sust Energy Rev 2011;15:4212-22.
22. Huang Y, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 2013;15:1095.
23. Fan LT, Lee YH. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: derivation of a mechanistic kinetic model. Biotechnol Bioeng 1983;25:2707-33.
24. Kuehnel MF, Reisner E. Solar hydrogen generation from lignocellulose. Angew Chem Int Ed Engl 2018;57:3290-6.
25. Iervolino G, Vaiano V, Murcia JJ, et al. Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J Catal 2016;339:47-56.
26. Vaiano V, Iervolino G. Photocatalytic removal of methyl orange Azo Dye with simultaneous hydrogen production using Ru-modified ZnO photocatalyst. Catalysts 2019;9:964.
27. Iervolino G, Vaiano V, Sannino D, Rizzo L, Palma V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B Environ 2017;207:182-94.
28. Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P. Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment. Int J Hydrog Energy 2016;41:959-66.
29. Li C, Wang H, Ming J, Liu M, Fang P. Hydrogen generation by photocatalytic reforming of glucose with heterostructured CdS/MoS2 composites under visible light irradiation. Int J Hydrog Energy 2017;42:16968-78.
30. Zhang G, Wu H, Chen D, et al. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ 2022;7:176-204.
31. Yang R, Mei L, Fan Y, et al. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021;5:e2100887.
32. Li Y, Wang J, Peng S, Lu G, Li S. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int J Hydrog Energy 2010;35:7116-26.
33. Liu QY, Wang P, Zhang FG, Yuan YJ. Visible-light-driven photocatalytic cellulose-to-H2 conversion by MoS2/ZnIn2S4 photocatalyst with cellulase assistance. Chemphyschem 2022;23:e202200319.
34. Zheng X, Wang X, Liu J, et al. Construction of NiPx/MoS2/NiS/CdS composite to promote photocatalytic H2 production from glucose solution. J Am Ceram Soc 2021;104:5307-16.
35. Zhao Z, Sun Y, Dong F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015;7:15-37.
36. Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 2015;27:2150-76.
37. Wang J, Kumar P, Zhao H, Kibria MG, Hu J. Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chem 2021;23:7435-57.
38. Rahman MZ, Davey K, Mullins CB. Tuning the intrinsic properties of carbon nitride for high quantum yield photocatalytic hydrogen production. Adv Sci 2018;5:1800820.
39. Zhao H, Ding X, Zhang B, Li Y, Wang C. Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over
40. Zhao H, Li C, Yu X, et al. Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Appl Catal B Environ 2022;302:120872.
41. Zhao H, Hu Z, Liu J, et al. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM
42. Luo H, Barrio J, Sunny N, et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv Energy Mater 2021;11:2101180.
43. Zhao H, Yu X, Li C, et al. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. J Energy Chem 2022;64:201-8.
44. Adeleye AT, Louis H, Akakuru OU, Joseph I, Enudi OC, Michael DP. A review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 2019;7:165-85.
45. Chen H, Wan K, Zheng F, et al. Recent advances in photocatalytic transformation of carbohydrates into valuable platform chemicals. Front Chem Eng 2021;3:615309.
46. Asghari FS, Yoshida H. Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of
47. Liu C, Carraher JM, Swedberg JL, Herndon CR, Fleitman CN, Tessonnier JP. Selective base-catalyzed isomerization of glucose to fructose. ACS Catal 2014;4:4295-8.
48. Choudhary V, Pinar AB, Lobo RF, Vlachos DG, Sandler SI. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 2013;6:2369-76.
49. Qi T, He MF, Zhu LF, Lyu YJ, Yang HQ, Hu CW. Cooperative catalytic performance of lewis and brønsted acids from AlCl3 salt in aqueous solution toward glucose-to-fructose isomerization. J Phys Chem C 2019;123:4879-91.
50. Chen SS, Tsang DC, Tessonnier J. Comparative investigation of homogeneous and heterogeneous Brønsted base catalysts for the isomerization of glucose to fructose in aqueous media. Appl Catal B Environ 2020;261:118126.
51. Wang J, Zhao H, Zhu B, et al. Solar-driven glucose isomerization into fructose via transient lewis acid-base active sites. ACS Catal 2021;11:12170-8.
52. Zhang H, Zhao H, Zhai S, et al. Electron-enriched Lewis acid-base sites on red carbon nitride for simultaneous hydrogen production and glucose isomerization. Appl Catal B Environ 2022;316:121647.
53. Ramachandran S, Fontanille P, Pandey A, Larroche C. Gluconic acid: properties, applications and microbial production. Food Technol Biotech 2006;44:185-95. Available from: https://hrcak.srce.hr/file/161891. [Last accessed on 19 Dec 2023]
54. Zhang Q, Wan Z, Yu IK, Tsang DC. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: a critical review. J Clean Prod 2021;312:127745.
55. Wang Y, Van de Vyver S, Sharma KK, Román-leshkov Y. Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 2014;16:719-26.
56. Qi P, Chen S, Chen J, Zheng J, Zheng X, Yuan Y. Catalysis and reactivation of ordered mesoporous carbon-supported gold nanoparticles for the base-free oxidation of glucose to gluconic acid. ACS Catal 2015;5:2659-70.
57. Jin X, Zhao M, Shen J, et al. Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. J Catal 2015;330:323-9.
58. Xiong L, Tang J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater 2021;11:2003216.
59. Bai FY, Han JR, Chen J, et al. The three-dimensionally ordered microporous CaTiO3 coupling Zn0.3Cd0.7S quantum dots for simultaneously enhanced photocatalytic H2 production and glucose conversion. J Colloid Interface Sci 2023;638:173-83.
60. Liu WJ, Xu Z, Zhao D, et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat Commun 2020;11:265.
61. Bai X, Hou Q, Qian H, et al. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl Catal B Environ 2022;303:120895.
62. Zhang Q, Xiang X, Ge Y, Yang C, Zhang B, Deng K. Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J Catal 2020;388:11-9.
63. Wang J, Chen L, Zhao H, et al. In situ photo-fenton-like tandem reaction for selective gluconic acid production from glucose photo-oxidation. ACS Catal 2023;13:2637-46.
64. Fehér C. Novel approaches for biotechnological production and application of L-arabinose. J Carbohydr Chem 2018;37:251-84.
65. Chong R, Li J, Ma Y, Zhang B, Han H, Li C. Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J Catal 2014;314:101-8.
66. Zhao H, Liu P, Wu X, et al. Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Appl Catal B Environ 2021;291:120055.
67. Wang J, Zhao H, Liu P, et al. Selective superoxide radical generation for glucose photoreforming into arabinose. J Energy Chem 2022;74:324-31.
68. Zhou B, Song J, Wu T, et al. Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chem 2016;18:3852-7.
69. Alajarin R, Garcia-Junceda E, Wong CH. A short enzymic synthesis of L-glucose from dihydroxyacetone phosphate and
70. Wang Y, Deng W, Wang B, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 2013;4:2141.
71. Kang F, Shi C, Zhu Y, et al. Dual-functional marigold-like ZnxCd1-xS homojunction for selective glucose photoreforming with remarkable H2 coproduction. J Energy Chem 2023;79:158-67.
72. Zhao H, Li CF, Yong X, et al. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. iScience 2021;24:102109.
73. Jin D, Ma J, Sun R. Nitrogen-doped biochar nanosheets facilitate charge separation of a Bi/Bi2O3 nanosphere with a Mott-Schottky heterojunction for efficient photocatalytic reforming of biomass. J Mater Chem C 2022;10:3500-9.
74. Ma J, Jin D, Li Y, et al. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Appl Catal B Environ 2021;283:119520.
75. Ma J, Li Y, Jin D, et al. Functional B@mCN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid. Green Chem 2020;22:6384-92.
76. Li Y, Ma J, Jin D, et al. Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid. Appl Catal B Environ 2021;291:120123.
77. Ma J, Li Y, Jin D, et al. Reasonable regulation of carbon/nitride ratio in carbon nitride for efficient photocatalytic reforming of biomass-derived feedstocks to lactic acid. Appl Catal B Environ 2021;299:120698.
78. Zhao H, Wang X, Wu X, et al. Exploration of optimal reaction conditions on lactic acid production from glucose photoreforming over carbon nitride. Resour Chem Mater 2023;2:111-6.
79. Wang J, Wang X, Zhao H, et al. Selective C3−C4 cleavage via glucose photoreforming under the effect of nucleophilic dimethyl sulfoxide. ACS Catal 2022;12:14418-28.
80. Wang TW, Yin ZW, Guo YH, et al. Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal. CCS Chem 2023;5:1773-88.
81. Zhang Y, Yang S, Wang Z, et al. High selective conversion of fructose to lactic acid by photocatalytic reforming of
82. Potapenko KO, Gerasimov EY, Cherepanova SV, Saraev AA, Kozlova EA. Efficient photocatalytic hydrogen production over
83. Zhang R, Eronen A, Du X, et al. A catalytic approach via retro-aldol condensation of glucose to furanic compounds. Green Chem 2021;23:5481-6.
84. Zou J, Zhang G, Xu X. One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Appl Catal A Gen 2018;563:73-9.
85. Djellabi R, Aboagye D, Galloni MG, et al. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species - a review. Bioresour Technol 2023;368:128333.