REFERENCES

1. Yan P, Xiao C, Xu L, et al. Biomass energy in China’s terrestrial ecosystems: insights into the nation’s sustainable energy supply. Renew Sust Energy Rev 2020;127:109857.

2. Balat M, Ayar G. Biomass energy in the world, use of biomass and potential trends. Energy Sources 2005;27:931-40.

3. Ning P, Yang G, Hu L, et al. Recent advances in the valorization of plant biomass. Biotechnol Biofuels 2021;14:102.

4. Li C, Li J, Qin L, Yang P, Vlachos DG. Recent advances in the photocatalytic conversion of biomass-derived furanic compounds. ACS Catal 2021;11:11336-59.

5. Toe CY, Tsounis C, Zhang J, et al. Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy Environ Sci 2021;14:1140-75.

6. Huang Z, Luo N, Zhang C, Wang F. Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022;6:197-214.

7. Xia B, Zhang Y, Shi B, Ran J, Davey K, Qiao S. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods 2020;4:2000063.

8. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 2017;46:337-65.

9. Li C, Naghadeh SB, Guo L, Xu K, Zhang JZ, Wang H. Cellulose as sacrificial biomass for photocatalytic hydrogen evolution over one-dimensional CdS loaded with NiS2 as a cocatalyst. ChemistrySelect 2020;5:1470-7.

10. Zhong N, Yu X, Zhao H, Hu J, Gates ID. Biomass photoreforming for hydrogen production over hierarchical 3DOM TiO2-Au-CdS. Catalysts 2022;12:819.

11. Augustin A, Chuaicham C, Shanmugam M, et al. Recent development of organic-inorganic hybrid photocatalysts for biomass conversion into hydrogen production. Nanoscale Adv 2022;4:2561-82.

12. Nwosu U, Wang A, Palma B, et al. Selective biomass photoreforming for valuable chemicals and fuels: a critical review. Renew Sust Energy Rev 2021;148:111266.

13. Shi C, Kang F, Zhu Y, et al. Photoreforming lignocellulosic biomass for hydrogen production: optimized design of photocatalyst and photocatalytic system. Chem Eng J 2023;452:138980.

14. Ma J, Liu K, Yang X, et al. Recent advances and challenges in photoreforming of biomass-derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride photocatalysts. ChemSusChem 2021;14:4903-22.

15. Liu X, Duan X, Wei W, Wang S, Ni B. Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chem 2019;21:4266-89.

16. Isikgor FH, Becer CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 2015;6:4497-559.

17. Yuan Y, Jiang B, Chen H, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol Biofuels 2021;14:205.

18. Jensen CU, Rodriguez Guerrero JK, Karatzos S, Olofsson G, Iversen SB. Fundamentals of HydrofactionTM: renewable crude oil from woody biomass. Biomass Conv Bioref 2017;7:495-509.

19. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv 2011;29:675-85.

20. Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 2011;4:3913.

21. Chew J, Doshi V. Recent advances in biomass pretreatment - torrefaction fundamentals and technology. Renew Sust Energy Rev 2011;15:4212-22.

22. Huang Y, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 2013;15:1095.

23. Fan LT, Lee YH. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: derivation of a mechanistic kinetic model. Biotechnol Bioeng 1983;25:2707-33.

24. Kuehnel MF, Reisner E. Solar hydrogen generation from lignocellulose. Angew Chem Int Ed Engl 2018;57:3290-6.

25. Iervolino G, Vaiano V, Murcia JJ, et al. Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J Catal 2016;339:47-56.

26. Vaiano V, Iervolino G. Photocatalytic removal of methyl orange Azo Dye with simultaneous hydrogen production using Ru-modified ZnO photocatalyst. Catalysts 2019;9:964.

27. Iervolino G, Vaiano V, Sannino D, Rizzo L, Palma V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B Environ 2017;207:182-94.

28. Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P. Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment. Int J Hydrog Energy 2016;41:959-66.

29. Li C, Wang H, Ming J, Liu M, Fang P. Hydrogen generation by photocatalytic reforming of glucose with heterostructured CdS/MoS2 composites under visible light irradiation. Int J Hydrog Energy 2017;42:16968-78.

30. Zhang G, Wu H, Chen D, et al. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ 2022;7:176-204.

31. Yang R, Mei L, Fan Y, et al. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021;5:e2100887.

32. Li Y, Wang J, Peng S, Lu G, Li S. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int J Hydrog Energy 2010;35:7116-26.

33. Liu QY, Wang P, Zhang FG, Yuan YJ. Visible-light-driven photocatalytic cellulose-to-H2 conversion by MoS2/ZnIn2S4 photocatalyst with cellulase assistance. Chemphyschem 2022;23:e202200319.

34. Zheng X, Wang X, Liu J, et al. Construction of NiPx/MoS2/NiS/CdS composite to promote photocatalytic H2 production from glucose solution. J Am Ceram Soc 2021;104:5307-16.

35. Zhao Z, Sun Y, Dong F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015;7:15-37.

36. Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 2015;27:2150-76.

37. Wang J, Kumar P, Zhao H, Kibria MG, Hu J. Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chem 2021;23:7435-57.

38. Rahman MZ, Davey K, Mullins CB. Tuning the intrinsic properties of carbon nitride for high quantum yield photocatalytic hydrogen production. Adv Sci 2018;5:1800820.

39. Zhao H, Ding X, Zhang B, Li Y, Wang C. Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-schemeCdxZn1-xS/Au/g-C3N4 photocatalysts under visible light. Sci Bull 2017;62:602-9.

40. Zhao H, Li C, Yu X, et al. Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Appl Catal B Environ 2022;302:120872.

41. Zhao H, Hu Z, Liu J, et al. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy 2018;47:266-74.

42. Luo H, Barrio J, Sunny N, et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv Energy Mater 2021;11:2101180.

43. Zhao H, Yu X, Li C, et al. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. J Energy Chem 2022;64:201-8.

44. Adeleye AT, Louis H, Akakuru OU, Joseph I, Enudi OC, Michael DP. A review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 2019;7:165-85.

45. Chen H, Wan K, Zheng F, et al. Recent advances in photocatalytic transformation of carbohydrates into valuable platform chemicals. Front Chem Eng 2021;3:615309.

46. Asghari FS, Yoshida H. Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind Eng Chem Res 2007;46:7703-10.

47. Liu C, Carraher JM, Swedberg JL, Herndon CR, Fleitman CN, Tessonnier JP. Selective base-catalyzed isomerization of glucose to fructose. ACS Catal 2014;4:4295-8.

48. Choudhary V, Pinar AB, Lobo RF, Vlachos DG, Sandler SI. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 2013;6:2369-76.

49. Qi T, He MF, Zhu LF, Lyu YJ, Yang HQ, Hu CW. Cooperative catalytic performance of lewis and brønsted acids from AlCl3 salt in aqueous solution toward glucose-to-fructose isomerization. J Phys Chem C 2019;123:4879-91.

50. Chen SS, Tsang DC, Tessonnier J. Comparative investigation of homogeneous and heterogeneous Brønsted base catalysts for the isomerization of glucose to fructose in aqueous media. Appl Catal B Environ 2020;261:118126.

51. Wang J, Zhao H, Zhu B, et al. Solar-driven glucose isomerization into fructose via transient lewis acid-base active sites. ACS Catal 2021;11:12170-8.

52. Zhang H, Zhao H, Zhai S, et al. Electron-enriched Lewis acid-base sites on red carbon nitride for simultaneous hydrogen production and glucose isomerization. Appl Catal B Environ 2022;316:121647.

53. Ramachandran S, Fontanille P, Pandey A, Larroche C. Gluconic acid: properties, applications and microbial production. Food Technol Biotech 2006;44:185-95. Available from: https://hrcak.srce.hr/file/161891. [Last accessed on 19 Dec 2023]

54. Zhang Q, Wan Z, Yu IK, Tsang DC. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: a critical review. J Clean Prod 2021;312:127745.

55. Wang Y, Van de Vyver S, Sharma KK, Román-leshkov Y. Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 2014;16:719-26.

56. Qi P, Chen S, Chen J, Zheng J, Zheng X, Yuan Y. Catalysis and reactivation of ordered mesoporous carbon-supported gold nanoparticles for the base-free oxidation of glucose to gluconic acid. ACS Catal 2015;5:2659-70.

57. Jin X, Zhao M, Shen J, et al. Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. J Catal 2015;330:323-9.

58. Xiong L, Tang J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater 2021;11:2003216.

59. Bai FY, Han JR, Chen J, et al. The three-dimensionally ordered microporous CaTiO3 coupling Zn0.3Cd0.7S quantum dots for simultaneously enhanced photocatalytic H2 production and glucose conversion. J Colloid Interface Sci 2023;638:173-83.

60. Liu WJ, Xu Z, Zhao D, et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat Commun 2020;11:265.

61. Bai X, Hou Q, Qian H, et al. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl Catal B Environ 2022;303:120895.

62. Zhang Q, Xiang X, Ge Y, Yang C, Zhang B, Deng K. Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J Catal 2020;388:11-9.

63. Wang J, Chen L, Zhao H, et al. In situ photo-fenton-like tandem reaction for selective gluconic acid production from glucose photo-oxidation. ACS Catal 2023;13:2637-46.

64. Fehér C. Novel approaches for biotechnological production and application of L-arabinose. J Carbohydr Chem 2018;37:251-84.

65. Chong R, Li J, Ma Y, Zhang B, Han H, Li C. Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J Catal 2014;314:101-8.

66. Zhao H, Liu P, Wu X, et al. Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Appl Catal B Environ 2021;291:120055.

67. Wang J, Zhao H, Liu P, et al. Selective superoxide radical generation for glucose photoreforming into arabinose. J Energy Chem 2022;74:324-31.

68. Zhou B, Song J, Wu T, et al. Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chem 2016;18:3852-7.

69. Alajarin R, Garcia-Junceda E, Wong CH. A short enzymic synthesis of L-glucose from dihydroxyacetone phosphate and L-glyceraldehyde. J Org Chem 1995;60:4294-5.

70. Wang Y, Deng W, Wang B, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 2013;4:2141.

71. Kang F, Shi C, Zhu Y, et al. Dual-functional marigold-like ZnxCd1-xS homojunction for selective glucose photoreforming with remarkable H2 coproduction. J Energy Chem 2023;79:158-67.

72. Zhao H, Li CF, Yong X, et al. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. iScience 2021;24:102109.

73. Jin D, Ma J, Sun R. Nitrogen-doped biochar nanosheets facilitate charge separation of a Bi/Bi2O3 nanosphere with a Mott-Schottky heterojunction for efficient photocatalytic reforming of biomass. J Mater Chem C 2022;10:3500-9.

74. Ma J, Jin D, Li Y, et al. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Appl Catal B Environ 2021;283:119520.

75. Ma J, Li Y, Jin D, et al. Functional B@mCN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid. Green Chem 2020;22:6384-92.

76. Li Y, Ma J, Jin D, et al. Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid. Appl Catal B Environ 2021;291:120123.

77. Ma J, Li Y, Jin D, et al. Reasonable regulation of carbon/nitride ratio in carbon nitride for efficient photocatalytic reforming of biomass-derived feedstocks to lactic acid. Appl Catal B Environ 2021;299:120698.

78. Zhao H, Wang X, Wu X, et al. Exploration of optimal reaction conditions on lactic acid production from glucose photoreforming over carbon nitride. Resour Chem Mater 2023;2:111-6.

79. Wang J, Wang X, Zhao H, et al. Selective C3−C4 cleavage via glucose photoreforming under the effect of nucleophilic dimethyl sulfoxide. ACS Catal 2022;12:14418-28.

80. Wang TW, Yin ZW, Guo YH, et al. Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal. CCS Chem 2023;5:1773-88.

81. Zhang Y, Yang S, Wang Z, et al. High selective conversion of fructose to lactic acid by photocatalytic reforming of BiOBr/Znx@SnO2-n in alkaline condition. J Catal 2022;413:843-57.

82. Potapenko KO, Gerasimov EY, Cherepanova SV, Saraev AA, Kozlova EA. Efficient photocatalytic hydrogen production over NiS-modified cadmium and manganese sulfide solid solutions. Materials 2022;15:8026.

83. Zhang R, Eronen A, Du X, et al. A catalytic approach via retro-aldol condensation of glucose to furanic compounds. Green Chem 2021;23:5481-6.

84. Zou J, Zhang G, Xu X. One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Appl Catal A Gen 2018;563:73-9.

85. Djellabi R, Aboagye D, Galloni MG, et al. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species - a review. Bioresour Technol 2023;368:128333.

86. Aboagye D, Djellabi R, Medina F, Contreras S. Radical-mediated photocatalysis for lignocellulosic biomass conversion into value-added chemicals and hydrogen: facts, opportunities and challenges. Angew Chem Int Ed Engl 2023;135:e202301909.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/