REFERENCES

1. Zhang G, Liu Y, Zhao J, Li Y, Zhang Q. Radical cascade reactions of unsaturated C‒C bonds involving migration. Sci China Chem 2019;62:1476-91.

2. Li G, Huo X, Jiang X, Zhang W. Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chem Soc Rev 2020;49:2060-118.

3. Dong B, Shen J, Xie L. Recent developments on 1,2-difunctionalization and hydrofunctionalization of unactivated alkenes and alkynes involving C–S bond formation. Org Chem Front 2023;10:1322-45.

4. Beller M, Seayad J, Tillack A, Jiao H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew Chem Int Ed Engl 2004;43:3368-98.

5. Enachi A, Baabe D, Zaretzke MK, et al. [(NHC)CoR2]: pre-catalysts for homogeneous olefin and alkyne hydrogenation. Chem Commun 2018;54:13798-801.

6. Sánchez-delgado RA, Rosales M. Kinetic studies as a tool for the elucidation of the mechanisms of metal complex-catalyzed homogeneous hydrogenation reactions. Coordin Chem Rev 2000;196:249-80.

7. Rangheard C, de Julián Fernández C, Phua PH, Hoorn J, Lefort L, de Vries JG. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalton Trans 2010;39:8464-71.

8. King AO, Larsen RD, Negishi E. Palladium-catalyzed heterogeneous hydrogenation. In: Negishi E, editor. Handbook of organopalladium chemistry for organic synthesis. New York: John Wiley & Sons, Inc.; 2002. pp. 2719-52.

9. Thomas S, Greenhalgh MD. Heterogeneous hydrogenation of C=C and C≡C bonds. In: Knochel P, Molander GA, editors. Comprehensive Organic Synthesis II. Elsevier; 2014. pp. 564-604.

10. Card RJ, Liesner CE, Neckers DC. Poly(styryl)bipyridinepalladium complexes as heterogeneous catalysts for hydrogenation of alkenes and alkynes. J Org Chem 1979;44:1095-8.

11. Lam J, Szkop KM, Mosaferi E, Stephan DW. FLP catalysis: main group hydrogenations of organic unsaturated substrates. Chem Soc Rev 2019;48:3592-612.

12. Li M, Wu W, Jiang H. Recent advances in silver-catalyzed transformations of electronically unbiased alkenes and alkynes. ChemCatChem 2020;12:5034-50.

13. Torres-Calis A, García JJ. Homogeneous manganese-catalyzed hydrofunctionalizations of alkenes and alkynes: catalytic and mechanistic tendencies. ACS Omega 2022;7:37008-38.

14. Chen J, Guo J, Lu Z. Recent advances in hydrometallation of alkenes and alkynes via the first row transition metal catalysis. Chin J Chem 2018;36:1075-109.

15. Pirnot MT, Wang YM, Buchwald SL. Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew Chem Int Ed Engl 2016;55:48-57.

16. Greenhalgh MD, Jones AS, Thomas SP. Iron-catalysed hydrofunctionalisation of alkenes and alkynes. ChemCatChem 2015;7:190-222.

17. Crossley SW, Obradors C, Martinez RM, Shenvi RA. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem Rev 2016;116:8912-9000.

18. Guo J, Cheng Z, Chen J, Chen X, Lu Z. Iron- and Cobalt-catalyzed asymmetric hydrofunctionalization of alkenes and alkynes. Acc Chem Res 2021;54:2701-16.

19. Yin X, Li S, Guo K, Song L, Wang X. Palladium-catalyzed enantioselective hydrofunctionalization of alkenes: recent advances. Eur J Org Chem 2023;26:e202300783.

20. Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem Rev 2008;108:3795-892.

21. Chiappe C, Capraro D, Conte V, Pieraccini D. Stereoselective halogenations of alkenes and alkynes in ionic liquids. Org Lett 2001;3:1061-3.

22. Choi DS, Kim JH, Shin US, Deshmukh RR, Song CE. Thermodynamically- and kinetically-controlled Friedel-Crafts alkenylation of arenes with alkynes using an acidic fluoroantimonate(v) ionic liquid as catalyst. Chem Commun 2007:3482-4.

23. Balaraman E, Srinivas V, Kumara Swamy K. Hydrophosphonylation of activated alkenes and alkynes via fluoride ion activation in ionic liquid medium. Tetrahedron 2009;65:7603-10.

24. Orella MJ, Román-leshkov Y, Brushett FR. Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing. Curr Opin Chem Eng 2018;20:159-67.

25. Li G, Lou X, Peng C, Liu C, Chen W. Interface chemistry for sodium metal anodes/batteries: a review. Chem Synth 2022;2:16.

26. Yin Y, Kang X, Han B. Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide. Chem Synth 2022;2:19.

27. Blank S, Nguyen Z, Boucher DG, Minteer SD. Electrochemical cascade reactions for electro-organic synthesis. Curr Opin Electrochem 2022;35:101049.

28. Meyer TH, Choi I, Tian C, Ackermann L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 2020;6:2484-96.

29. Wang C, Jiang X, Wang Y, Tang Y, Zhou J, Fu G. Recent advances in nonmetallic modulation of palladium-based electrocatalysts. Chem Synth 2023;3:8.

30. Cheng X, Lei A, Mei T, Xu H, Xu K, Zeng C. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem 2022;4:1120-52.

31. Zhong J, Yu Y, Zhang D, Ye K. Merging cobalt catalysis and electrochemistry in organic synthesis. Chinese Chem Lett 2021;32:963-72.

32. Yan M, Kawamata Y, Baran PS. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev 2017;117:13230-319.

33. Frontana-uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-medrano R. Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 2010;12:2099-119.

34. Blanco DE, Dookhith AZ, Modestino MA. Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. React Chem Eng 2019;4:8-16.

35. Francke R, Little RD. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem Soc Rev 2014;43:2492-521.

36. Schiffer ZJ, Manthiram K. Electrification and decarbonization of the chemical industry. Joule 2017;1:10-4.

37. Botte GG. Electrochemical manufacturing in the chemical industry. Electrochem Soc interface 2014;23:49-55.

38. Siu JC, Fu N, Lin S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc Chem Res 2020;53:547-60.

39. Mei H, Yin Z, Liu J, Sun H, Han J. Recent advances on the electrochemical difunctionalization of alkenes/alkynes. Chin J Chem 2019;37:292-301.

40. Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021;50:7941-8002.

41. Ma C, Fang P, Liu D, et al. Transition metal-catalyzed organic reactions in undivided electrochemical cells. Chem Sci 2021;12:12866-73.

42. Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-synthesis of organic compounds with heterogeneous catalysis. Adv Sci 2022;10:e2205077.

43. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Site-selective C‒H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc Chem Res 2020;53:300-10.

44. Yuan Y, Lei A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc Chem Res 2019;52:3309-24.

45. Röckl JL, Pollok D, Franke R, Waldvogel SR. A decade of electrochemical dehydrogenative C,C-coupling of aryls. Acc Chem Res 2020;53:45-61.

46. Yuan Y, Yang J, Lei A. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chem Soc Rev 2021;50:10058-86.

47. Li Y, Wen L, Guo W. A guide to organic electroreduction using sacrificial anodes. Chem Soc Rev 2023;52:1168-88.

48. Xiang H, He J, Qian W, et al. Electroreductively induced radicals for organic synthesis. Molecules 2023;28:857.

49. Yang J, Qin H, Yan K, Cheng X, Wen J. Advances in electrochemical hydrogenation since 2010. Adv Synth Catal 2021;363:5407-16.

50. Shi Z, Li N, Lu H, et al. Recent advances in the electrochemical hydrogenation of unsaturated hydrocarbons. Curr Opin Electrochem 2021;28:100713.

51. Tungler A, Sipos E, Hada V. Heterogeneous catalytic asymmetric hydrogenation of the C=C bond. Curr Org Chem 2006;10:1569-83.

52. Fürstner A. trans-Hydrogenation, gem-hydrogenation, and trans-hydrometalation of alkynes: an interim report on an unorthodox reactivity paradigm. J Am Chem Soc 2019;141:11-24.

53. Wang D, Astruc D. The golden age of transfer hydrogenation. Chem Rev 2015;115:6621-86.

54. Lebedeva O, Kultin D, Каlenchuk A, Кustov L. Advances and prospects in electrocatalytic hydrogenation of aromatic hydrocarbons for synthesis of “loaded” liquid organic hydrogen carriers. Curr Opin Electrochem 2023;38:101207.

55. Robertson JC, Coote ML, Bissember AC. Synthetic applications of light, electricity, mechanical force and flow. Nat Rev Chem 2019;3:290-304.

56. Kraft S, Ryan K, Kargbo RB. Recent advances in asymmetric hydrogenation of tetrasubstituted olefins. J Am Chem Soc 2017;139:11630-41.

57. Patil N, Yamamoto Y. Palladium-catalyzed cascade reactions of highly activated olefins. Synlett 2007;2007:1994-2005.

58. Tomida S, Tsuda R, Furukawa S, Saito M, Tajima T. Electroreductive hydrogenation of activated olefins using the concept of site isolation. Electrochem Commun 2016;73:46-9.

59. Huang B, Li Y, Yang C, Xia W. Electrochemical 1,4-reduction of α,β-unsaturated ketones with methanol and ammonium chloride as hydrogen sources. Chem Commun 2019;55:6731-4.

60. Loh YY, Nagao K, Hoover AJ, et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 2017;358:1182-7.

61. Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide. Angew Chem Int Ed Engl 2020;59:13962-7.

62. Li J, He L, Liu X, Cheng X, Li G. Electrochemical hydrogenation with gaseous ammonia. Angew Chem Int Ed Engl 2019;58:1759-63.

63. Qin Y, Lu J, Zou Z, et al. Metal-free chemoselective hydrogenation of unsaturated carbon–carbon bonds via cathodic reduction. Org Chem Front 2020;7:1817-22.

64. Qin H, Yang J, Yan K, et al. Electrochemical-induced hydrogenation of electron-deficient internal olefins and alkynes with CH3OH as hydrogen donor. Adv Synth Catal 2021;363:2104-9.

65. Derosa J, Garrido-Barros P, Peters JC. Electrocatalytic reduction of C‒C π-bonds via a cobaltocene-derived concerted proton-electron transfer mediator: fumarate hydrogenation as a model study. J Am Chem Soc 2021;143:9303-7.

66. Gnaim S, Bauer A, Zhang HJ, et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C‒C bonds. Nature 2022;605:687-95.

67. Bi C, Zhao X, Jia Z, et al. Electrochemical reduction of diarylketones and aryl alkenes. ChemCatChem 2023;15:e202300258.

68. Kolb S, Werz DB. Site-selective hydrogenation/deuteration of benzylic olefins enabled by electroreduction using water. Chemistry 2023;29:e202300849.

69. Ananikov VP, Beletskaya IP. Alkyne and alkene insertion into metal–heteroatom and metal–hydrogen bonds: the key stages of hydrofunctionalization process. In: Ananikov V, Tanaka M, editors. Hydrofunctionalization. Berlin: Springer Berlin Heidelberg; 2013. pp. 1-19.

70. Wu X, Gannett CN, Liu J, et al. Intercepting hydrogen evolution with hydrogen-atom transfer: electron-initiated hydrofunctionalization of alkenes. J Am Chem Soc 2022;144:17783-91.

71. Crespo-quesada M, Cárdenas-lizana F, Dessimoz A, Kiwi-minsker L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal 2012;2:1773-86.

72. Moreno-Marrodan C, Liguori F, Barbaro P. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes. Beilstein J Org Chem 2017;13:734-54.

73. Michaelides IN, Dixon DJ. Catalytic stereoselective semihydrogenation of alkynes to E-alkenes. Angew Chem Int Ed Engl 2013;52:806-8.

74. Delgado JA, Benkirane O, Claver C, Curulla-Ferré D, Godard C. Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Trans 2017;46:12381-403.

75. Liu Z, Zhang L, Ren Z, Zhang J. Advances in selective electrocatalytic hydrogenation of alkynes to alkenes. Chemistry 2023;29:e202202979.

76. Bortolami M, Petrucci R, Rocco D, Scarano V, Chiarotto I. Alkynes as building blocks, intermediates and products in the electrochemical procedures since 2000. ChemElectroChem 2021;8:3604-13.

77. Sherbo RS, Delima RS, Chiykowski VA, Macleod BP, Berlinguette CP. Complete electron economy by pairing electrolysis with hydrogenation. Nat Catal 2018;1:501-7.

78. Kurimoto A, Sherbo RS, Cao Y, Loo NWX, Berlinguette CP. Electrolytic deuteration of unsaturated bonds without using D2. Nat Catal 2020;3:719-26.

79. Li B, Ge H. Highly selective electrochemical hydrogenation of alkynes: rapid construction of mechanochromic materials. Sci Adv 2019;5:eaaw2774.

80. Wu Y, Liu C, Wang C, Lu S, Zhang B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew Chem Int Ed Engl 2020;59:21170-5.

81. Li H, Gao Y, Wu Y, et al. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules. J Am Chem Soc 2022;144:19456-65.

82. Gao Y, Yang R, Wang C, et al. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci Adv 2022;8:eabm9477.

83. Lee MY, Kahl C, Kaeffer N, Leitner W. Electrocatalytic semihydrogenation of alkynes with [Ni(bpy)3]2+. JACS Au 2022;2:573-8.

84. Bage AD, Nicholson K, Hunt TA, Langer T, Thomas SP. The hidden role of boranes and borohydrides in hydroboration catalysis. ACS Catal 2020;10:13479-86.

85. Bose SK, Mao L, Kuehn L, et al. First-row d-block element-catalyzed carbon‒boron bond formation and related processes. Chem Rev 2021;121:13238-341.

86. Zuo Z, Wen H, Liu G, Huang Z. Cobalt-catalyzed hydroboration and borylation of alkenes and alkynes. Synlett 2018;29:1421-9.

87. Moniruzzaman M, Afrin S, Ali MK. Progress in the electrochemical synthesis of organoboron compounds. Asian J Org Chem 2023;12:e202300090.

88. Yin C, Tang S, Mei J, Hu X, Zhang H. Electrochemical synthesis and transformation of organoboron compounds. Org Chem Front 2023;10:3361-77.

89. Zhang Y, Zhao X, Bi C, et al. Selective electrocatalytic hydroboration of aryl alkenes. Green Chem 2021;23:1691-9.

90. Aelterman M, Jubault P, Poisson T. Electrochemical borylation of electron-deficient alkenes and allenoates. Eur J Org Chem 2023;26:e202300063.

91. Yuan Q, Zhang X, Guo L, Yang C, Xia W. Metal-free electrochemical hydroboration of olefins. Adv Synth Catal 2023;365:1788-93.

92. Guo C, Li P, Wang S, et al. Selective electroreductive hydroboration of olefins with B2pin2. J Org Chem 2023;88:4569-80.

93. Aelterman M, Sayes M, Jubault P, Poisson T. Electrochemical hydroboration of alkynes. Chemistry 2021;27:8277-82.

94. Qiu H, Lv K, Qu H, et al. Chemoselective electrocatalytic hydroboration of alkynes with pinacolborane. J Mol Struct 2022;1266:133463.

95. Pal PP, Ghosh S, Hajra A. Recent advances in carbosilylation of alkenes and alkynes. Org Biomol Chem 2023;21:2272-94.

96. Li L, Huang W, Xu Z, Xu L. Catalytic asymmetric silicon‒carbon bond-forming transformations based on Si‒H functionalization. Sci China Chem 2023;66:1654-87.

97. Sun J, Deng L. Cobalt complex-catalyzed hydrosilylation of alkenes and alkynes. ACS Catal 2016;6:290-300.

98. Jouikov V, Grigorieva L. Electrochemically induced silylation of unsaturated compounds. Electrochimica Acta 1996;41:469-70.

99. Kuciński K. Electrifying synthesis of organosilicon compounds - from electrosynthesis to electrocatalysis. Inorg Chem Front 2023;10:1382-94.

100. Zhang W, Guan W, Martinez Alvarado JI, Novaes LFT, Lin S. Deep electroreductive chemistry: harnessing carbon- and silicon-based reactive intermediates in organic synthesis. ACS Catal 2023;13:8038-48.

101. Lu L, Siu JC, Lai Y, Lin S. An electroreductive approach to radical silylation via the activation of strong Si‒Cl bond. J Am Chem Soc 2020;142:21272-8.

102. Biremond T, Jubault P, Poisson T. Electrochemical hydrosilylation of alkynes. ACS Org Inorg Au 2022;2:148-52.

103. Zhou H, Fei L, Zhang J, Pan Y, Tang H. Electrochemical hydrosilylation of electron-withdrawing alkenes. Adv Synth Catal 2023;365:1591-5.

104. Yang KS, Gurak JA Jr, Liu Z, Engle KM. Catalytic, regioselective hydrocarbofunctionalization of unactivated alkenes with diverse C‒H nucleophiles. J Am Chem Soc 2016;138:14705-12.

105. Yang D, Huang H, Li MH, et al. Directed cobalt-catalyzed anti-markovnikov hydroalkylation of unactivated alkenes enabled by “Co‒H” catalysis. Org Lett 2020;22:4333-8.

106. Wu X, Hao W, Ye KY, et al. Ti-catalyzed radical alkylation of secondary and tertiary alkyl chlorides using michael acceptors. J Am Chem Soc 2018;140:14836-43.

107. Zhang W, Lin S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism. J Am Chem Soc 2020;142:20661-70.

108. Zhang X, Cheng X. Electrochemical reductive functionalization of alkenes with deuterochloroform as a one-carbon deuteration Block. Org Lett 2022;24:8645-50.

109. Hu P, Peters BK, Malapit CA, et al. Electroreductive olefin‒ketone coupling. J Am Chem Soc 2020;142:20979-86.

110. Wu H, Chen W, Deng W, et al. Cathodic regioselective coupling of unactivated aliphatic ketones with alkenes. Org Lett 2022;24:1412-7.

111. Xu H, Liu J, Nie F, Zhao X, Jiang Z. Metal-free hydropyridylation of thioester-activated alkenes via electroreductive radical coupling. J Org Chem 2021;86:16204-12.

112. Zhang S, Gao W, Shi J, et al. Regioselective umpolung addition of dicyanobenzene to α,β-unsaturated alkenes enabled by electrochemical reduction. Org Chem Front 2022;9:1261-6.

113. Zhang S, Li L, Li X, et al. Electroreductive 4-pyridylation of electron-deficient alkenes with assistance of Ni(acac)2. Org Lett 2020;22:3570-5.

114. Nanda SK, Mallik R. Transition metal-catalyzed hydroalkoxylation of alkynes: an overview. Chemistry 2021;27:15571-604.

115. Goodwin JA, Aponick A. Correction: Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes. Chem Commun 2016;521:6731.

116. Xie W, Li Z. Asymmetric synthesis of ethers by catalytic alkene hydro­alkoxy­lation. Synthesis 2020;52:2127-46.

117. Kennemur JL, Maji R, Scharf MJ, List B. Catalytic asymmetric hydroalkoxylation of C‒C multiple bonds. Chem Rev 2021;121:14649-81.

118. Yang F, Nie Y, Liu H, Zhang L, Mo F, Zhu R. Electrocatalytic oxidative hydrofunctionalization reactions of alkenes via Co(II/III/IV) cycle. ACS Catal 2022;12:2132-7.

119. Park SH, Jang J, Shin K, Kim H. Electrocatalytic radical-polar crossover hydroetherification of alkenes with phenols. ACS Catal 2022;12:10572-80.

120. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010;53:7902-17.

121. Wang T, Jiao N. Direct approaches to nitriles via highly efficient nitrogenation strategy through C‒H or C‒C bond cleavage. Acc Chem Res 2014;47:1137-45.

122. Wang MX. Enantioselective biotransformations of nitriles in organic synthesis. Acc Chem Res 2015;48:602-11.

123. Strache JP, Münzer L, Adler A, Blunk D, Schmalz H. Enantioselective nickel-catalyzed hydrocyanation of homostilbenes. Eur J Org Chem 2023;26:e202300050.

124. Song L, Fu N, Ernst BG, et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat Chem 2020;12:747-54.

125. Zhang Y, Riduan SN. Catalytic hydrocarboxylation of alkenes and alkynes with CO2. Angew Chem Int Ed Engl 2011;50:6210-2.

126. Xiao W, Zhang J, Wu J. Recent advances in reactions involving carbon dioxide radical anion. ACS Catal 2023;13:15991-6011.

127. Xu QJ, Jiang JW, Wang XF, Duan LY, Guo H. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met 2023;42:1888-98.

128. Gaydou M, Moragas T, Juliá-Hernández F, Martin R. Site-selective catalytic carboxylation of unsaturated hydrocarbons with CO2 and water. J Am Chem Soc 2017;139:12161-4.

129. Seo H, Liu A, Jamison TF. Direct β-selective hydrocarboxylation of styrenes with CO2 enabled by continuous flow photoredox catalysis. J Am Chem Soc 2017;139:13969-72.

130. Wang S, Feng T, Wang Y, Qiu Y. Recent advances in electrocarboxylation with CO2. Chem Asian J 2022;17:e202200543.

131. Liu X, Zhang K, Tao L, Lu X, Zhang W. Recent advances in electrochemical carboxylation reactions using carbon dioxide. Green Chem Eng 2022;3:125-37.

132. Senboku H. Electrochemical fixation of carbon dioxide: synthesis of carboxylic acids. Chem Rec 2021;21:2354-74.

133. Kim Y, Park GD, Balamurugan M, Seo J, Min BK, Nam KT. Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water. Adv Sci 2020;7:1900137.

134. Alkayal A, Tabas V, Montanaro S, Wright IA, Malkov AV, Buckley BR. Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins. J Am Chem Soc 2020;142:1780-5.

135. Wang H, Lin M, Fang H, Chen T, Lu J. Electrochemical dicarboxylation of styrene: synthesis of 2-phenylsuccinic acid. Chin J Chem 2007;25:913-6.

136. Sheta AM, Alkayal A, Mashaly MA, et al. Selective electrosynthetic hydrocarboxylation of α,β-unsaturated esters with carbon dioxide**. Angew Chem Int Ed Engl 2021;60:21832-7.

137. Liu J, Xiao HZ, Fu Q, Yu DG. Advances in radical phosphorylation from 2016 to 2021. Chem Synth 2021;1:9.

138. Zhong G, Huang Y, He L. Regioselectivity of N-heteroarene electrocarboxylations: divided vs. undivided cell. Chem Synth 2023;3:19.

139. Liu W, Niu X, Tang J, et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem Synth 2023;3:44.

140. Li S, Du Y, Wang M, et al. Optimizing the reaction pathway of nitride electrode by co-doping strategy for boosting alkaline hydrogen evolution reaction kinetics. Sci China Mater 2023;66:4639-49.

141. Yuan Y, Lei A. Is electrosynthesis always green and advantageous compared to traditional methods? Nat Commun 2020;11:802.

142. Rein J, Annand JR, Wismer MK, et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor. ACS Cent Sci 2021;7:1347-55.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/