REFERENCES
1. Heffern MC, Matosziuk LM, Meade TJ. Lanthanide probes for bioresponsive imaging. Chem Rev 2014;114:4496-539.
2. Pershagen E, Nordholm J, Borbas KE. Luminescent lanthanide complexes with analyte-triggered antenna formation. J Am Chem Soc 2012;134:9832-5.
3. Pei K, Wu J, Zhao M, et al. Polarized emission of lanthanide metal-organic framework (Ln-MOF) crystals for high-capacity photonic barcodes. Adv Opt Mater 2022;10:2102143.
4. Jia T, Chen G. Lanthanide nanoparticles for near-infrared II theranostics. Coord Chem Rev 2022;471:214724.
5. Song B, Shi W, Shi W, et al. A dual-modal nanoprobe based on Eu(iii) complex-MnO2 nanosheet nanocomposites for time-gated luminescence-magnetic resonance imaging of glutathione in vitro and in vivo. Nanoscale 2019;11:6784-93.
6. Sørensen TJ, Tropiano M, Blackburn OA, Tilney JA, Kenwright AM, Faulkner S. Preparation and study of an f,f,f',f'' covalently linked tetranuclear hetero-trimetallic complex - a europium, terbium, dysprosium triad. Chem Commun 2013;49:783-5.
7. Hasegawa Y, Kitagawa Y, Nakanishi T. Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes. NPG Asia Mater 2018;10:52-70.
9. D’aléo A, Pointillart F, Ouahab L, Andraud C, Maury O. Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red. Coord Chem Rev 2012;256:1604-20.
10. Xu LJ, Xu GT, Chen ZN. Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers. Coord Chem Rev 2014;273-4:47-62.
11. Xu HB, Zhang LY, Xie ZL, Ma E, Chen ZN. Heterododecanuclear Pt6Ln6 (Ln = Nd, Yb) arrays of 4-ethynyl-2,2'-bipyridine with sensitized near-IR lanthanide luminescence by Pt → Ln energy transfer. Chem Commun 2007:2744-6.
12. Xu HB, Chen XL, Deng JG, et al. Sensitized near infrared emission through supramolecular d → f energy transfer within an ionic Ru(ii)-Er(iii) pair. Dalton Trans 2018;47:2073-8.
13. Mara D, Artizzu F, Smet PF, Kaczmarek AM, Van Hecke K, Van Deun R. Vibrational quenching in near-infrared emitting lanthanide complexes: a quantitative experimental study and novel insights. Chemistry 2019;25:15944-56.
14. Han S, Deng R, Gu Q, et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature 2020;587:594-9.
15. Qin CY, Gao JH, Xie XB, Zhai CP, Li HQ, Ma Y. Crystalline phase-dependent cations migration in core-shell lanthanide-doped upconversion nanoparticles. Chem Synth 2023;3:29.
16. Zhu X, Su Q, Feng W, Li F. Anti-Stokes shift luminescent materials for bio-applications. Chem Soc Rev 2017;46:1025-39.
17. Charbonnière LJ. Bringing upconversion down to the molecular scale. Dalton Trans 2018;47:8566-70.
18. Hyppänen I, Lahtinen S, Ääritalo T, Mäkelä J, Kankare J, Soukka T. Photon upconversion in a molecular lanthanide complex in anhydrous solution at room temperature. ACS Photonics 2014;1:394-7.
19. Singh-Rachford TN, Castellano FN. Photon upconversion based on sensitized triplet-triplet annihilation. Coord Chem Rev 2010;254:2560-73.
20. Kiseleva N, Nazari P, Dee C, et al. Lanthanide sensitizers for large anti-stokes shift near-infrared-to-visible triplet - triplet annihilation photon upconversion. J Phys Chem Lett 2020;11:2477-81.
21. Kalmbach J, Wang C, You Y, et al. Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts. Angew Chem Int Ed Engl 2020;59:18804-8.
22. Chorazy S, Wyczesany M, Sieklucka B. Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules 2017;22:1902.
23. Wang C, Otto S, Dorn M, et al. Deuterated molecular ruby with record luminescence quantum yield. Angew Chem Int Ed Engl 2018;57:1112-6.
24. Sun G, Xie Y, Wang Y, et al. Cooperative sensitization upconversion in solution dispersions of co-crystal assemblies of mononuclear Yb3+ and Eu3+ complexes. Angew Chem Int Ed Engl 2023;62:e202304591.
25. Punj D, Mivelle M, Moparthi SB, et al. A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations. Nat Nanotechnol 2013;8:512-6.
26. Xu HB, Zhang LY, Ni J, Chao HY, Chen ZN. Conformation changes and luminescent properties of Au-Ln (Ln = Nd, Eu, Er, Yb) arrays with 5-ethynyl-2,2'-bipyridine. Inorg Chem 2008;47:10744-52.
27. Xu HB, Deng JG, Kang B. Designed synthesis and photophysical properties of multifunctional hybrid lanthanide complexes. RSC Adv 2013;3:11367-84.
28. Xu HB, Wang J, Chen XL, et al. Regulating structural dimensionality and emission colors by organic conjugation between SmIII at a fixed distance. Dalton Trans 2018;47:6908-16.
29. Gálico DA, Ovens JS, Sigoli FA, Murugesu M. Room-temperature upconversion in a nanosized {Ln15} molecular cluster-aggregate. ACS Nano 2021;15:5580-5.
31. Huang K, Wu H, Shi M, Li F, Yi T, Huang C. Reply to comment on “aggregation-induced phosphorescent emission (AIPE) of iridium(iii) complexes”: origin of the enhanced phosphorescence. Chem Commun 2009:1243-5.
32. Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 2009:4332-53.
33. Martinić I, Eliseeva SV, Nguyen TN, Pecoraro VL, Petoud S. Near-infrared optical imaging of necrotic cells by photostable lanthanide-based metallacrowns. J Am Chem Soc 2017;139:8388-91.
34. Zhuo H, Guan DB, He JC, Xu HB, Zeng MH. Stepwise increase of NdIII -based phosphorescence by AIE-active sensitizer: broadening the AIPE family from transition metals to discrete near-infrared lanthanide complexes**. Chemistry 2021;27:16204-11.
35. Tinnefeld P. Single-molecule detection: Breaking the concentration barrier. Nat Nanotechnol 2013;8:480-2.
36. Zhang Y, Jiao PC, Xu HB, et al. Switchable sensitizers stepwise lighting up lanthanide emissions. Sci Rep 2015;5:9335.
37. Alric C, Taleb J, Le Duc G, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 2008;130:5908-15.
38. Lewis DJ, Glover PB, Solomons MC, Pikramenou Z. Purely heterometallic lanthanide(III) macrocycles through controlled assembly of disulfide bonds for dual color emission. J Am Chem Soc 2011;133:1033-43.
39. Xu HB, Deng JG, Zhang LY, Chen ZN. Structural and photophysical studies on geometric (Er2Yb2/Yb2Er2) and configurational
40. Knighton RC, Soro LK, Lecointre A, et al. Upconversion in molecular hetero-nonanuclear lanthanide complexes in solution. Chem Commun 2021;57:53-6.
41. Golesorkhi B, Fürstenberg A, Nozary H, Piguet C. Deciphering and quantifying linear light upconversion in molecular erbium complexes. Chem Sci 2019;10:6876-85.
42. Kalmbach J, Wang C, You Y, et al. NIR-NIR-Aufkonvertierung in molekularen Chrom-Ytterbium-Salzen. Angew Chem Int Ed 2020;132:18966-70.
43. Mo JT, Wang Z, Fu PY, et al. Highly efficient DCL, UCL, and TPEF in hybridized Ln-complexes from Ir-metalloligand. CCS Chem 2021;3:729-38.
44. Aboshyan-Sorgho L, Besnard C, Pattison P, et al. Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex. Angew Chem Int Ed Engl 2011;50:4108-12.
45. Wang J, Jiang Y, Liu JY, et al. Discrete heteropolynuclear Yb/Er assemblies: switching on molecular upconversion under mild conditions. Angew Chem Int Ed Engl 2021;60:22368-75.
46. Xu HB, Zhong YT, Zhang WX, Chen ZN, Chen XM. Syntheses, structures and photophysical properties of heterotrinuclear Zn2Ln clusters (Ln = Nd, Eu, Tb, Er, Yb). Dalton Trans 2010;39:5676-82.
47. Wang J, Feringa BL. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 2011;331:1429-32.
48. Pooler DRS, Lubbe AS, Crespi S, Feringa BL. Designing light-driven rotary molecular motors. Chem Sci 2021;12:14964-86.
49. Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Artificial molecular motors. Chem Soc Rev 2017;46:2592-621.
50. Wezenberg SJ, Chen KY, Feringa BL. Visible-light-driven photoisomerization and increased rotation speed of a molecular motor acting as a ligand in a ruthenium(II) complex. Angew Chem Int Ed Engl 2015;54:11457-61.
51. Faulkner A, van Leeuwen T, Feringa BL, Wezenberg SJ. Allosteric regulation of the rotational speed in a light-driven molecular motor. J Am Chem Soc 2016;138:13597-603.
52. Cnossen A, Hou L, Pollard MM, Wesenhagen PV, Browne WR, Feringa BL. Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J Am Chem Soc 2012;134:17613-9.
53. Li S, Zhao Y, Li Q, Li M, Zhang X, Xu HB. Lanthanide-functionalized water-soluble ionic motors: synergetically regulated rotary motion by allostery and triplet sensitization. Adv Opt Mater 2023;11:2300179.
55. Eliseeva SV, Bünzli JCG. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 2010;39:189-227.
56. Lubbe AS, Kistemaker JCM, Smits EJ, Feringa BL. Solvent effects on the thermal isomerization of a rotary molecular motor. Phys Chem Chem Phys 2016;18:26725-35.
57. Wiedbrauk S, Maerz B, Samoylova E, et al. Twisted hemithioindigo photoswitches: solvent polarity determines the type of light-induced rotations. J Am Chem Soc 2016;138:12219-27.
58. Dasari S, Singh S, Sivakumar S, Patra AK. Dual-sensitized luminescent europium(ΙΙΙ) and terbium(ΙΙΙ) complexes as bioimaging and light-responsive therapeutic agents. Chemistry 2016;22:17387-96.
59. Weng H, Yan B. A flexible Tb(III) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules. Sens Actuators B Chem 2016;228:702-8.
60. Wang X, Jiang Y, Tissot A, Serre C. Luminescent sensing platforms based on lanthanide metal-organic frameworks: current strategies and perspectives. Coord Chem Rev 2023;497:215454.
61. Lin M, Gao Y, Hornicek F, et al. Near-infrared light activated delivery platform for cancer therapy. Adv Colloid Interface Sci 2015;226:123-37.
62. Liu Y, Zhang C, Xu C, et al. Controlled synthesis of up-conversion luminescent Gd/Tm-MOFs for pH-responsive drug delivery and UCL/MRI dual-modal imaging. Dalton Trans 2018;47:11253-63.
63. Kenney JW, Lee JJ. Photoluminescent metal complexes and materials as temperature sensors - an introductory review. Chemosensors 2021;9:109.
64. Brites CDS, Balabhadra S, Carlos LD. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv Opt Mater 2019;7:1801239.
65. Marin R, Millan NC, Kelly L, et al. Luminescence thermometry using sprayed films of metal complexes. J Mater Chem C 2022;10:1767-75.
66. Vanden Bussche F, Kaczmarek AM, Van Speybroeck V, Van Der Voort P, Stevens CV. Overview of N-rich antennae investigated in lanthanide-based temperature sensing. Chemistry 2021;27:7214-30.
67. Zairov RR, Dovzhenko AP, Podyachev SN, et al. Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids Surf B Biointerfaces 2022;217:112664.
68. Peng XX, Zhu XF, Zhang JL. Near infrared (NIR) imaging: exploring biologically relevant chemical space for lanthanide complexes. J Inorg Biochem 2020;209:111118.
69. Zairov RR, Dovzhenko AP, Sapunova AS, et al. Dual red-NIR luminescent Eu-Yb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing. Mater Sci Eng C Mater Biol Appl 2019;105:110057.
70. Ning Y, Tang J, Liu YW, Jing J, Sun Y, Zhang JL. Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging. Chem Sci 2018;9:3742-53.
71. Hamon N, Bridou L, Roux M, Maury O, Tripier R, Beyler M. Design of bifunctional pyclen-based lanthanide luminescent bioprobes for targeted two-photon imaging. J Org Chem 2023;88:8286-99.
72. Wang L, Zhao Z, Wei C, et al. Review on the electroluminescence study of lanthanide complexes. Adv Opt Mater 2019;7:1801256.
73. Zhan G, Wang L, Zhao Z, Fang P, Bian Z, Liu Z. Highly efficient and air-stable lanthanide EuII complex: new emitter in organic light emitting diodes. Angew Chem Int Ed Engl 2020;59:19011-5.
74. Fang P, Wang L, Zhan G, et al. Lanthanide cerium(III) tris(pyrazolyl)borate complexes: efficient blue emitters for doublet organic light-emitting diodes. ACS Appl Mater Interfaces 2021;13:45686-95.
75. Zairov RR, Dovzhenko AP, Sapunova AS, et al. Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303-313 K range. Sci Rep 2020;10:20541.
76. Wang Y, Li H, He X, Xu Z. Application in anticounterfeiting for multistimuli smart luminescent materials based on MOF-on-MOF. Inorg Chem 2021;60:15001-9.
77. Guo WJ, Peng T, Zhu W, et al. Visualization of supramolecular assembly by aggregation-induced emission. Aggregate 2023;4:e297.
78. Zheng B, Fan J, Chen B, et al. Rare-earth doping in nanostructured inorganic materials. Chem Rev 2022;122:5519-603.
79. Bolvin H, Fürstenberg A, Golesorkhi B, Nozary H, Taarit I, Piguet C. Metal-based linear light upconversion implemented in molecular complexes: challenges and perspectives. Acc Chem Res 2022;55:442-56.