REFERENCES

1. Liu X, He J, Zhao S, et al. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat Commun 2018;9:4365.

2. Peng X, Mi Y, Liu X, et al. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J Mater Chem A 2022;10:6134-45.

3. Palo DR, Dagle RA, Holladay JD. Methanol steam reforming for hydrogen production. Chem Rev 2007;107:3992-4021.

4. Yu H, Li Y, Xu C, Jin F, Ye F, Li X. Distinct facets to enhance the process of hydrogen production via methanol steam reforming - a review. Energy Stor Sav 2022;1:53-69.

5. Zhao X, Chen M, Bi Z, Zhang H, Hu G, Zhou Y. Double-confinement construction of atomically-dispersed-Fe bifunctional oxygen electrocatalyst for high-performance zinc-air battery. Small ;2023:2304854 (Online ahead of print).

6. Qin Y, Han X, Li Y, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal 2020;10:5973-8.

7. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 2021;33:e2007100.

8. Liang Z, Guo H, Lei H, Cao R. Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction. Chin Chem Lett 2022;33:3999-4002.

9. Hou J, Peng X, Sun J, et al. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays†. Inorg Chem Front 2022;9:3047-58.

10. Jia T, Wang L, Zhang L, et al. Engineering vacancy and hydrophobicity of spherical coral-like CuO catalyst for effective electrochemical CO2 reduction to ethylene. Surf Interfaces 2023;38:102841.

11. Hou X, Ding J, Liu W, Zhang S, Luo J, Liu X. Asymmetric coordination environment engineering of atomic catalysts for CO2 reduction. Nanomaterials 2023;13:309.

12. Jose V, Do V, Prabhu P, et al. Activating amorphous Ru metallenes through Co integration for enhanced water electrolysis. Adv Energy Mater 2023;13:2301119.

13. Zhuang S, Tang Y, Tai X, et al. Hydrogen and electricity co-generation from hydrazine-assisted water electrolysis on hierarchical porous heteroatoms-doped CoCu catalysts. Appl Catal B Environ 2022;306:121132.

14. Sun P, Zhou Y, Li H, et al. Round-the-clock bifunctional honeycomb-like nitrogen-doped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency. Appl Catal B Environ 2022;310:121354.

15. Wang C, Schechter A, Feng L. Iridium-based catalysts for oxygen evolution reaction in acidic media: mechanism, catalytic promotion effects and recent progress. Nano Res Energy 2023;2:e9120056.

16. Zhao X, Zheng M, Zhang Z, et al. Supramolecular Nanosheet evolution into BC3N matrix improves the hydrogen evolution reaction activity in the pH universality of highly dispersed Pt nanoparticles†. J Mater Chem A 2021;9:16427-35.

17. Wang C, Geng Q, Fan L, Li J, Ma L, Li C. Phase engineering oriented defect-rich amorphous/crystalline RuO2 nanoporous particles for boosting oxygen evolution reaction in acid media. Nano Res Energy 2023;2:e9120070.

18. Xu Y, Xue H, Li X, et al. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res Energy 2023;2:e9120052.

19. Zhang H, Qi G, Liu W, et al. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution†. Inorg Chem Front 2023;10:2423-9.

20. Yang Q, Liu W, Wang B, et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat Commun 2017;8:14429.

21. Xu L, Zhang S, Huang L, et al. A novel CoxNi1-xP/fs-Si self-supporting electrodes manufactured via femtosecond laser for highly efficient hydrogen evolution reaction. Surf Interfaces 2022;32:102173.

22. Xiang H, Zheng Y, Chen Y, et al. Self-gating enhanced carrier transfer in semiconductor electrocatalyst verified in microdevice. Chin Chem Lett 2022;33:3221-6.

23. Zhang H, Qiu Y, Zhang S, Liu Q, Luo J, Liu X. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics 2022;28:3927-34.

24. Qiao N, Yang C, Wang M, Ma X. Two-dimensional TeX(X=C, Si, Ge) monolayers with strong intrinsic electric field for efficiency hydrogen evolution reaction. Surf Interfaces 2022;31:102011.

25. Liu B, Chen Z, Xiong R, et al. Enhancing hydrogen evolution reaction performance of transition metal doped two-dimensional electride Ca2N. Chin Chem Lett 2023;34:107643.

26. Do VH, Prabhu P, Jose V, et al. Pd-PdO nanodomains on amorphous Ru metallene oxide for high-performance multifunctional electrocatalysis. Adv Mater 2023;35:2208860.

27. Shan Y, Li T, Liu L. Electronic structure transformation induced by dual-metal orbital hybridization in RexMn1-xS2 monolayer for hydrogen evolution reaction. Surf Interfaces 2022;28:101671.

28. Liu W, Huang J, Yang Q, et al. Multi-shelled hollow metal-organic frameworks. Angew Chem Int Ed 2017;56:5512-6.

29. Wei T, Liu W, Zhang S, Liu Q, Luo J, Liu X. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production†. Chem Commun 2023;59:442-5.

30. Liu W, Niu X, Feng J, et al. Tunable Heterogeneous FeCo alloy-Mo0.82N bifunctional electrocatalysts for temperature-adapted Zn-air batteries. ACS Appl Mater Interfaces 2023;15:15344-52.

31. Zhang H, Zhao M, Liu H, et al. Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries. Nano Lett 2021;21:2255-64.

32. Xu X, Xie J, Liu B, et al. PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl Catal B Environ 2022;316:121687.

33. Chen J, Huang J, Wang H, et al. Phase-mediated cobalt phosphide with unique core-shell architecture serving as efficient and bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reaction. Chin Chem Lett 2022;33:3752-6.

34. Ji Y, Du J, Chen A. Review on heteroatom doping carbonaceous materials toward electrocatalytic carbon dioxide reduction. Trans Tianjin Univ 2022;28:292-306.

35. Feng J, Zheng D, Yin R, et al. A wide-temperature adaptive aqueous Zinc-Air battery-based on Cu-Co dual metal-nitrogen-carbon/nanoparticle electrocatalysts. Small Structures 2023;4:2200340.

36. Zhao B, Liu J, Xu C, et al. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv Funct Mater 2021;31:2008812.

37. Liu Y, Hu B, Wu S, et al. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl Catal B Environ 2019;258:117970.

38. Wang T, Cao X, Qin H, Chen X, Li J, Jiao L. Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays†‡. J Mater Chem A 2021;9:21094-100.

39. Sun Q, Wang L, Shen Y, et al. Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction. ACS Sustain Chem Eng 2018;6:12746-54.

40. Wang Z, Xu L, Huang F, et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv Energy Mater 2019;9:1900390.

41. Qian Q, Li Y, Liu Y, et al. Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chem Eng J 2021;414:128818.

42. Teng D, Zhang J, Luo X, et al. Remarkably enhanced photodegradation of organic pollutants by NH2-UiO-66/ZnO composite under visible-light irradiation. J Renew Mater 2022;10:2378-91.

43. Kong D, Qi J, Liu D, Zhang X, Pan L, Zou J. Ni-doped BiVO4 with V4+ species and oxygen vacancies for efficient photoelectrochemical water splitting. Trans Tianjin Univ 2019;25:340-7.

44. Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 2019;6:3214-26.

45. Zhu B, Liang Z, Zou R. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020;16:e1906133.

46. Li J, Wang S, Sun S, Wu X, Zhang B, Feng L. A review of hetero-structured Ni-based active catalysts for urea electrolysis. J Mater Chem A 2022;10:9308-26.

47. Sun H, Xu X, Song Y, Zhou W, Shao Z. Designing high-valence metal sites for electrochemical water splitting. Adv Funct Mater 2021;31:2009779.

48. Wang J, Zhang B, Guo W, et al. Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Adv Mater 2023;35:e2211099.

49. Tomaschun G, Dononelli W, Li Y, Bäumer M, Klüner T, Moskaleva LV. Methanol oxidation on the Au(310) surface: a theoretical study. J Catal 2018;364:216-27.

50. He D, Cao L, Feng L, et al. Dual modulation of morphology and electronic structures of VN@C electrocatalyst by W doping for boosting hydrogen evolution reaction. Chin Chem Lett 2022;33:4781-5.

51. Xiong L, Sun Z, Zhang X, et al. Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat Commun 2019;10:3782.

52. Zhang Z, Liu J, Wang J, et al. Single-atom catalyst for high-performance methanol oxidation. Nat Commun 2021;12:5235.

53. Tomaschun G, Klüner T. Methanol oxidation on the Pt(321) surface: a theoretical approach on the role of surface morphology and surface coverage effects†. Phys Chem Chem Phys 2019;21:18227-39.

54. Fang Y, Liu Z. First principles Tafel kinetics of methanol oxidation on Pt(111). Surf Sci 2015;631:42-7.

55. Zhou Y, Kuang Y, Hu G, Wang X, Feng L. An effective Pt-CoTe/NC catalyst of bifunctional methanol electrolysis for hydrogen generation. Mater Today Phys 2022;27:100831.

56. Zeng R, Yang Y, Shen T, et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study. ACS Catal 2020;10:770-6.

57. Li H, Han Y, Zhao H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat Commun 2020;11:5437.

58. Qian Q, Zhang J, Li J, et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew Chem Int Ed 2021;60:5984-93.

59. Cui T, Chi J, Zhu J, et al. Tuning the size and chemisorption of FeP4 by trace Ru doping for hydrazine-assisted hydrogen evolution in seawater at large-current-density. Appl Catal B Environ 2022;319:121950.

60. Ge S, Zhang L, Hou J, et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl Energy Mater 2022;5:9487-94.

61. Jeong Y, Shankar Naik S, Yu Y, et al. Ligand-free monophasic CuPd alloys endow boosted reaction kinetics toward energy-efficient hydrogen fuel production paired with hydrazine oxidation. J Mater Sci Technol 2023;143:20-9.

62. Li J, Li Y, Wang J, et al. Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation-boosted alkaline hydrogen evolution. Adv Funct Mater 2022;32:2109439.

63. Singh RK, Rajavelu K, Montag M, Schechter A. Advances in catalytic electrooxidation of urea: a review. Energy Tech 2021;9:2100017.

64. Daramola DA, Singh D, Botte GG. Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. J Phys Chem A 2010;114:11513-21.

65. Xu X, Li J, Zhang C, et al. Controllable transition engineering from homogeneous NiSe2 nanowrinkles to heterogeneous Ni3Se4/NiSe2 rod-like nanoarrays for promoted urea-rich water oxidation at large current densities. Appl Catal B Environ 2022;319:121949.

66. Qin H, Ye Y, Li J, et al. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv Funct Mater 2023;33:2209698.

67. Liu D, Zeng Q, Hu C, et al. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res Energy 2022;1:e9120017.

68. Zhang Q, Xia T, Huang H, et al. Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. Nano Res Energy 2023;2:e9120041.

69. Zhao X, Zhou Y, Pan D, et al. Tailoring high-index-facet and oxygen defect of black In2O3-x/In2O3 as highly photothermal catalyst for boosting photocatalytic hydrogen evolution and contaminant degradation. J Environ Chem Eng 2023;11:109752.

70. Zhang H, Ren W, Guan C, Cheng C. Pt decorated 3D vertical graphene nanosheet arrays for efficient methanol oxidation and hydrogen evolution reactions. J Mater Chem A 2017;5:22004-11.

71. Feng Y, Zhao Z, Li F, et al. Highly surface-distorted Pt superstructures for multifunctional electrocatalysis. Nano Lett 2021;21:5075-82.

72. Ma G, Zhang X, Zhou G, Wang X. Hydrogen production from methanol reforming electrolysis at NiO nanosheets supported Pt nanoparticles. Chem Eng J 2021;411:128292.

73. Li Y, Kidkhunthod P, Zhou Y, Wang X, Lee JM. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages. Adv Funct Mater 2022;32:2205985.

74. Guo Y, Yang X, Liu X, Tong X, Yang N. Coupling methanol oxidation with hydrogen evolution on bifunctional Co-doped rh electrocatalyst for efficient hydrogen generation. Adv Funct Mater 2023;33:2209134.

75. Ren W, Zang W, Zhang H, et al. PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis. Carbon 2019;142:206-16.

76. Jiang YC, Sun HY, Li YN, et al. Bifunctional Pd@RhPd core-shell nanodendrites for methanol electrolysis. ACS Appl Mater Interfaces 2021;13:35767-76.

77. Yin S, Liu S, Wang Z, et al. Methanol-assisted energy-saving hydrogen production over defect-rich perforated PdIn bimetallene. Chem Eng J 2022;435:134711.

78. Wang H, Cui L, Yin S, et al. Methanol-assisted energy-efficient water splitting over rambutan-like Au@PdRu core-shell nanocatalysts. J Mater Chem A 2022;10:18889-94.

79. Sarno M, Ponticorvo E, Scarpa D. PtRh and PtRh/MoS2 nano-electrocatalysts for methanol oxidation and hydrogen evolution reactions. Chem Eng J 2019;377:120600.

80. Lu Z, Xie J, Hu J, Wang K, Cao Y. In situ replacement synthesis of Co@NCNT Encapsulated CoPt3@Co2P heterojunction boosting methanol oxidation and hydrogen evolution. Small 2021;17:e2104656.

81. Peng X, Xie S, Wang X, et al. Energy-saving hydrogen production by the methanol oxidation reaction coupled with the hydrogen evolution reaction co-catalyzed by a phase separation induced heterostructure. J Mater Chem A 2022;10:20761-9.

82. Zhao Z, Zhang J, Lei M, Lum Y. Reviewing the impact of halides on electrochemical CO2 reduction. Nano Res Energy 2023;2:e9120044.

83. Liang J, Liu Q, Alshehri AA, Sun X. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy 2022;1:e9120010.

84. Ahmad T, Liu S, Sajid M, et al. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res Energy 2022;1:e9120021.

85. Li K, Fan Q, Chuai H, Liu H, Zhang S, Ma X. Revisiting chlor-alkali electrolyzers: from materials to devices. Trans Tianjin Univ 2021;27:202-16.

86. Du X, Tan M, Wei T, et al. Highly efficient and robust nickel-iron bifunctional catalyst coupling selective methanol oxidation and freshwater/seawater hydrogen evolution via CO-free pathway. Chem Eng J 2023;452:139404.

87. He L, Liang B, Huang Y, Zhang T. Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: a review. Natl Sci Rev 2018;5:356-64.

88. Jia N, Liu Y, Wang L, et al. 0.2 V electrolysis voltage-driven alkaline hydrogen production with nitrogen-doped carbon nanobowl-supported ultrafine Rh nanoparticles of 1.4 nm. ACS Appl Mater Interfaces 2019;11:35039-49.

89. Zhang C, Liu H, Liu Y, et al. Rh2S3/N-doped carbon hybrids as ph-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods 2020;4:2000208.

90. Yang Q, Zhu B, Wang F, et al. Ru/NC heterointerfaces boost energy-efficient production of green H2 over a wide pH range. Nano Res 2022;15:5134-42.

91. Yu Y, Lee SJ, Theerthagiri J, Lee Y, Choi MY. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl Catal B Environ 2022;316:121603.

92. Kuang Y, Feng G, Li P, Bi Y, Li Y, Sun X. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew Chem Int Ed Engl 2016;55:693-7.

93. Liu Y, Zhang J, Li Y, et al. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat Commun 2020;11:1853.

94. Tang X, Zhang J, Mei B, et al. Synthesis of hollow CoSe2/MoSe2 nanospheres for efficient hydrazine-assisted hydrogen evolution. Chem Eng J 2021;404:126529.

95. Zhu Y, Zhang J, Qian Q, et al. Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew Chem Int Ed Engl 2022;61:e202113082.

96. Wei Z, Wang J, Guo S, Tan SC. Towards highly salt-rejecting solar interfacial evaporation: photothermal materials selection, structural designs, and energy management. Nano Res Energy 2022;1:e9120014.

97. Zhang L, Liang J, Yue L, et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res Energy 2022;1:e9120028.

98. Liu W, Que W, Yin R, et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl Catal B Environ 2023;328:122488.

99. Hussain SN, Men Y, Li Z, Zhao P, Cheng G, Luo W. Molybdenum-induced tuning 3d-orbital electron filling degree of CoSe2 for alkaline hydrogen and oxygen evolution reactions. Chin Chem Lett 2023;34:107364.

100. Deng K, Mao Q, Wang W, et al. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Appl Catal B Environ 2022;310:121338.

101. Zhai X, Yu Q, Liu G, et al. Hierarchical microsphere MOF arrays with ultralow Ir doping for efficient hydrogen evolution coupled with hydrazine oxidation in seawater. J Mater Chem A 2021;9:27424-33.

102. Wang X, Zhang W, Yu Q, et al. Fe-doped CoNiP@N-doped carbon nanosheet arrays for hydrazine oxidation assisting energy-saving seawater splitting. Chem Eng J 2022;446:136987.

103. Guo L, Yu Q, Zhai X, et al. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res 2022;15:8846-56.

104. Liu Y, Zhang J, Li Y, Qian Q, Li Z, Zhang G. Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production. Adv Funct Mater 2021;31:2103673.

105. Zhang W, Liu X, Yu Q, et al. In situ electronic redistribution of Ni2P hierarchical structure for energy-saving hydrogen production in seawater. Chem Eng J 2023;454:140210.

106. Wu X, Zhang Z, He C, et al. Mixed-valence cobalt oxides bifunctional electrocatalyst with rich oxygen vacancies for aqueous metal-air batteries. Chem Eng J 2023;453:139831.

107. Zheng X, Yang J, Li P, et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew Chem Int Ed Engl 2023;62:e202217449.

108. Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010;1:413-26.

109. Wu G, Santandreu A, Kellogg W, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 2016;29:83-110.

110. Dong Y, Wu Y, Wang X, et al. Biomimicry-inspired fish scale-like Ni3N/FeNi3N/NF superhydrophilic/superaerophobic nanoarrays displaying high electrocatalytic performance†. Nanoscale 2023;15:1813-23.

111. Zhu X, Dou X, Dai J, et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew Chem Int Ed 2016;55:12465-9.

112. Qin Z, Liu W, Que W, et al. Non-noble-metal electrocatalysts for oxygen evolution reaction toward seawater splitting: a review. ChemPhysMater 2023;2:185-96.

113. Ding J, Yang H, Zhang S, et al. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022;18:2204524.

114. Liu W, Zheng D, Zhang L, et al. Bioinspired interfacial engineering of a CoSe2 decorated carbon framework cathode towards temperature-tolerant and flexible Zn-air batteries†. Nanoscale 2021;13:3019-26.

115. Hu S, Feng C, Wang S, et al. Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition. ACS Appl Mater Interfaces 2019;11:13168-75.

116. Liu W, Que W, Shen X, et al. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction. Nanotechnology 2021;33:025401.

117. Gao S, Wei T, Sun J, et al. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Structures 2022;3:2200086.

118. Sha L, Yin J, Ye K, et al. The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J Mater Chem A 2019;7:9078-85.

119. Wang X, Wang J, Sun X, et al. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res 2018;11:988-96.

120. Peng Y, Tan Q, Huang H, et al. Customization of functional MOFs by a modular design strategy for target applications. Chem Synth 2022;2:15.

121. Yu X, Yu Z, Zhao H, Gates ID, Hu J. Photothermal catalytic H2 production over hierarchical porous CaTiO3 with plasmonic gold nanoparticles. Chem Synth 2023;3:3.

122. Xie H, Feng Y, He X, et al. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis. Small 2023;19:2207425.

123. Wang Y, Chen N, Du X, Han X, Zhang X. Transition metal atoms M (M = Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction. J Alloys Compd 2022;893:162269.

124. Li P, Huang Y, Ouyang X, Li W, Li F, Tian S. Unusual hcp Ni with metal and non-metal dual doping modulation to realize boosted urea oxidation. Chem Eng J 2023;464:142570.

125. Sun H, Liu J, Kim H, et al. Ni-doped CuO nanoarrays activate urea adsorption and stabilizes reaction intermediates to achieve high-performance urea oxidation catalysts. Adv Sci 2022;9:2204800.

126. Yu H, Zhu S, Hao Y, et al. Modulating local interfacial bonding environment of heterostructures for energy-saving hydrogen production at high current densities. Adv Funct Mater 2023;33:2212811.

127. Liu W, Feng J, Yin R, et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media. Chem Eng J 2022;430:132990.

128. Gao S, Wang T, Jin M, et al. Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis. Sci Chin Mater 2023;66:1013-23.

129. Zhang S, Fu J, Xing G, Zhu W, Ben T. Recent advances in porous adsorbent assisted atmospheric water harvesting: a review of adsorbent materials. Chem Synth 2023;3:10.

130. Zhang X, Fang X, Zhu K, et al. Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation. J Power Sources 2022;520:230882.

131. Xie S, Zhai T, Li W, et al. Hydrogen production from solar driven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2 nanowire arrays†. Green Chem 2013;15:2434-40.

132. Liu L, Ci S, Bi L, Jia J, Wen Z. Three-dimensional nanoarchitectures of Co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells. J Mater Chem A 2017;5:14763-74.

133. Xu H, Ci S, Ding Y, Wang G, Wen Z. Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. J Mater Chem A 2019;7:8006-29.

134. Zheng D, Li J, Ci S, et al. Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen. Appl Catal B Environ 2020;277:119178.

135. Liu W, Feng J, Wei T, et al. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res 2023;16:2325-46.

136. Wu M, Zhao J, Li C, Liu R. Heterogeneity in a metal-organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation†. J Mater Chem A 2022;10:4791-9.

137. Zhang E, Xie Y, Ci S, et al. Multifunctional high-activity and robust electrocatalyst derived from metal-organic frameworks. J Mater Chem A 2016;4:17288-98.

138. Li D, Huang Y, Li Z, Zhong L, Liu C, Peng X. Deep eutectic solvents derived carbon-based efficient electrocatalyst for boosting H2 production coupled with glucose oxidation. Chem Eng J 2022;430:132783.

139. Lin C, Li H, Zhang P, et al. Boosting water electrolysis with anodic glucose oxidation reaction over engineered cobalt nickel hydroxide nanosheet on carbon cloth. J Electroanal Chem 2020;861:113946.

140. Liu WJ, Xu Z, Zhao D, et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat Commun 2020;11:265.

141. Du P, Zhang J, Liu Y, Huang M. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem Commun 2017;83:11-5.

142. Xu Y, Liu M, Wang S, et al. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Appl Catal B Environ 2021;298:120493.

143. Li Y, Wei X, Chen L, Shi J, He M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat Commun 2019;10:5335.

144. Zhou P, Hai G, Zhao G, et al. CeO2 as an “electron pump” to boost the performance of Co4N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization. Appl Catal B Environ 2023;325:122364.

145. Zhao H, Lu D, Wang J, et al. Raw biomass electroreforming coupled to green hydrogen generation. Nat Commun 2021;12:2008.

146. Coughlin RW, Farooque M. Hydrogen production from coal, water and electrons. Nature 1979;279:301-3.

147. Ying Z, Geng Z, Zheng X, Dou B, Cui G. Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production. Energy 2022;238:121793.

148. Fan H, Yu H, Zhang Y, et al. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew Chem Int Ed Engl 2017;56:12566-70.

149. Zhang J, Huang S, Ning P, et al. Nested hollow architectures of nitrogen-doped carbon-decorated Fe, Co, Ni-based phosphides for boosting water and urea electrolysis. Nano Res 2022;15:1916-25.

150. Xu X, Hou X, Du P, et al. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res 2022;15:7124-33.

151. Ang H, Wang H, Li B, Zong Y, Wang X, Yan Q. 3D hierarchical porous Mo2C for efficient hydrogen evolution. Small 2016;12:2859-65.

152. Liu W, Dai X, Guo W, et al. Phase engineering of molybdenum carbide-cobalt heterostructures for long-lasting Zn-Air batteries. ACS Appl Mater Interfaces 2023;15:41476-82.

153. Zhang C, Guo Z, Tian Y, Yu C, Liu K, Jiang L. Engineering electrode wettability to enhance mass transfer in hydrogen evolution reaction. Nano Res Energy 2023;2:e9120063.

154. Chen J, Abazari R, Adegoke KA, et al. Metal-organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022;469:214664.

155. Chen S, Lian K, Liu W, et al. Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res 2023;16:9214-30.

156. Zhang H, Wei T, Qiu Y, et al. Recent progress in metal phosphorous chalcogenides: potential high-performance electrocatalysts. Small 2023;19:e2207249.

157. Zhang W, Qin X, Wei T, Liu Q, Luo J, Liu X. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J Colloid Interface Sci 2023;638:650-7.

158. Qi D, Lv F, Wei T, et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res Energy 2022;1:e9120022.

159. Theerthagiri J, Karuppasamy K, Lee SJ, et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci Appl 2022;11:250.

160. Wu T, Sun M, Huang B. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met 2022;41:2169-83.

161. Zhang Z, Liu G, Cui X, et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv Mater 2018;30:1801741.

162. Guo X, Guo S, Wu C, Li J, Liu C, Chen W. Intelligent monitoring for safety-enhanced lithium-ion/sodium-ion batteries. Adv Energy Mater 2023;13:2203903.

163. Lee SJ, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sustain Energy Rev 2021;143:110849.

164. Zhang Q, Lian K, Liu Q, et al. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J Colloid Interface Sci 2023;646:844-54.

165. Wei T, Meng G, Zhou Y, et al. Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater†. Chem Commun 2023;59:9992-5.

166. Hao P, Dong X, Wen H, et al. In-situ assembly of 2D/3D porous nickel cobalt sulfide solid solution as superior pre-catalysts to boost multi-functional electrocatalytic oxidation. Chin Chem Lett 2023;34:107843.

167. Fan Z, Luo Z, Huang X, et al. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J Am Chem Soc 2016;138:1414-9.

168. Hu W, Zheng M, Duan H, et al. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chin Chem Lett 2022;33:1412-6.

169. Wang T, Gao S, Wei T, et al. Co nanoparticles confined in mesoporous Mo/N Co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chemistry 2023;29:e202204034.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/