REFERENCES

1. Holladay J, Hu J, King D, Wang Y. An overview of hydrogen production technologies. Catal Today 2009;139:244-60.

2. Turner JA. Sustainable hydrogen production. Science 2004;305:972-4.

3. Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew Sust Energy Rev 2018;82:2440-54.

4. Xie WF, Shao MF. Alkaline water electrolysis for efficient hydrogen production. J Electrochem 2022;28:22014008.

5. Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrog Energy 2017;42:30470-92.

6. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 2021;33:e2007100.

7. Zouhri K, Lee S. Evaluation and optimization of the alkaline water electrolysis ohmic polarization: exergy study. Int J Hydrog Energy 2016;41:7253-63.

8. Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 2010;36:307-26.

9. Wang M, Wang Z, Gong X, Guo Z. The intensification technologies to water electrolysis for hydrogen production - a review. Renew Sust Energy Rev 2014;29:573-88.

10. Yin W, Cai Y, Xie L, et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res 2023;16:4381-98.

11. Zhao X, Ren H, Luo L. Gas Bubbles in electrochemical gas evolution reactions. Langmuir 2019;35:5392-408.

12. Angulo A, van der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 2020;4:555-79.

13. Deng X, Yang F, Li Y, Dang J, Ouyang M. Quantitative study on gas evolution effects under large current density in zero-gap alkaline water electrolyzers. J Power Sources 2023;555:232378.

14. Lu Z, Li Y, Lei X, Liu J, Sun X. Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes. Mater Horiz 2015;2:294-8.

15. Weijs MPMG, Janssen LJJ, Visser GJ. Ohmic resistance of solution in a vertical gas-evolving cell. J Appl Electrochem 1997;27:371-8.

16. Xie Y, Zhang LY, Ying PJ, Wang JC, Sun K, Li M. Intensified field-effect of hydrogen evolution reaction. Prog Chem 2021;33:1571-85.

17. Weier T, Baczyzmalski D, Massing J, Landgraf S, Cierpka C. The effect of a lorentz-force-driven rotating flow on the detachment of gas bubbles from the electrode surface. Int J Hydrog Energy 2017;42:20923-33.

18. Martin M. Bi’äñki’s ghost dance map: thanatoptic cartography and the native american spirit world. Imago Mundi 2013;65:106-14.

19. Liu Y, Pan L, Liu H, Chen T, Yin S, Liu M. Effects of magnetic field on water electrolysis using foam electrodes. Int J Hydrog Energy 2019;44:1352-8.

20. Niether C, Faure S, Bordet A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles. Nat Energy 2018;3:476-83.

21. Garcés-pineda FA, Blasco-ahicart M, Nieto-castro D, López N, Galán-mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy 2019;4:519-25.

22. Wang M, Wang Z, Guo Z. Understanding of the intensified effect of super gravity on hydrogen evolution reaction. Int J Hydrog Energy 2009;34:5311-7.

23. Wang M, Wang Z, Guo Z. Water electrolysis enhanced by super gravity field for hydrogen production. Int J Hydrog Energy 2010;35:3198-205.

24. Rashwan SS, Dincer I, Mohany A. A review on the importance of operating conditions and process parameters in sonic hydrogen production. Int J Hydrog Energy 2021;46:28418-34.

25. Cho KM, Deshmukh PR, Shin WG. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis. Ultrason Sonochem 2021;80:105796.

26. Li S, Wang C, Chen C. Water electrolysis in the presence of an ultrasonic field. Electrochim Acta 2009;54:3877-83.

27. Madigan NA, Hagan CR, Zhang H, Coury LA. Effects of sonication on electrode surfaces and metal particles. Ultrason Sonochem 1996;3:S239-47.

28. Swiegers GF, Terrett RNL, Tsekouras G, Tsuzuki T, Pace RJ, Stranger R. The prospects of developing a highly energy-efficient water electrolyser by eliminating or mitigating bubble effects. Sustain Energy Fuels 2021;5:1280-310.

29. Sullivan I, Zhang H, Zhu C, et al. 3D printed nickel-molybdenum-based electrocatalysts for hydrogen evolution at low overpotentials in a flow-through configuration. ACS Appl Mater Interfaces 2021;13:20260-8.

30. Chen Y, Chen J, Bai K, Xiao Z, Fan S. A flow-through electrode for hydrogen production from water splitting by mitigating bubble induced overpotential. J Power Sources 2023;561:232733.

31. Bakker MM, Vermaas DA. Gas bubble removal in alkaline water electrolysis with utilization of pressure swings. Electrochim Acta 2019;319:148-57.

32. Monk N, Watson S. Review of pulsed power for efficient hydrogen production. Int J Hydrog Energy 2016;41:7782-91.

33. Demir N, Kaya MF, Albawabiji MS. Effect of pulse potential on alkaline water electrolysis performance. Int J Hydrog Energy 2018;43:17013-20.

34. Hosseini SR, Ghasemi S, Ghasemi SA. Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction. J Mol Liq 2016;222:1068-75.

35. Wei Z, Ji M, Chen S, et al. Water electrolysis on carbon electrodes enhanced by surfactant. Electrochim Acta 2007;52:3323-9.

36. Brinkert K, Richter MH, Akay Ö, et al. Efficient solar hydrogen generation in microgravity environment. Nat Commun 2018;9:2527.

37. Browne MP, Vasconcelos JM, Coelho J, et al. Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustain Energy Fuels 2017;1:207-16.

38. Li S, Xie W, Song Y, et al. Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction. Chem Eng J 2022;437:135473.

39. Wang C, Jiang X, Wang Y, Tang Y, Zhou J, Fu G. Recent advances in nonmetallic modulation of palladium-based electrocatalysts. Chem Synth 2023;3:8.

40. Cong Y, Mccrum IT, Gao X, et al. Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction. J Mater Chem A 2019;7:3161-9.

41. Wang X, Zhang L, Liu CP, Ge JJ, Zhu JB, Xing W. Recent advances in structural regulation on non-precious metal catalysts for oxygen reduction reaction in alkaline electrolytes. J Electrochem 2022;28:2108501.

42. Yang F, Kim MJ, Brown M, Wiley BJ. Alkaline Water Electrolysis at 25 A cm-2 with a microfibrous flow-through electrode. Adv Energ Mater 2020;10:2001174.

43. Schalenbach M, Kasian O, Mayrhofer KJ. An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation. Int J Hydrog Energy 2018;43:11932-8.

44. Phillips R, Edwards A, Rome B, Jones DR, Dunnill CW. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int J Hydrog Energy 2017;42:23986-94.

45. Alexiadis A, Dudukovic M, Ramachandran P, Cornell A, Wanngård J, Bokkers A. Liquid-gas flow patterns in a narrow electrochemical channel. Chem Eng Sci 2011;66:2252-60.

46. de Groot MT, Vreman AW. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm. Electrochim Acta 2021;369:137684.

47. Kim J, Lee J, Yoo C, Lee K, Lee W. Low-cost and energy-efficient asymmetric nickel electrode for alkaline water electrolysis. Int J Hydrog Energy 2015;40:10720-5.

48. Paul MT, Yee BB, Bruce DR, Gates BD. Hexagonal arrays of cylindrical nickel microstructures for improved oxygen evolution reaction. ACS Appl Mater Interfaces 2017;9:7036-43.

49. Fujimura T, Kunimoto M, Fukunaka Y, Homma T. Analysis of the hydrogen evolution reaction at Ni micro-patterned electrodes. Electrochim Acta 2021;368:137678.

50. Iwata R, Zhang L, Wilke KL, et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule 2021;5:887-900.

51. Teschke O, Galembeck F. Effect of PTFE coverage on the performance of gas evolving electrodes. J Electrochem Soc 1984;131:1095-7.

52. Raman A, Peñas P, van der Meer D, Lohse D, Gardeniers H, Fernández Rivas D. Potential response of single successive constant-current-driven electrolytic hydrogen bubbles spatially separated from the electrode. Electrochim Acta 2022;425:140691.

53. Li N, Huang C, Wang X, Feng Y, An J. Electrosynthesis of hydrogen peroxide via two-electron oxygen reduction reaction: a critical review focus on hydrophilicity/hydrophobicity of carbonaceous electrode. Chem Eng J 2022;450:138246.

54. Garcia-rodriguez O, Lee YY, Olvera-vargas H, Deng F, Wang Z, Lefebvre O. Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode. Electrochim Acta 2018;276:12-20.

55. Hou D, Jassby D, Nerenberg R, Ren ZJ. Hydrophobic gas transfer membranes for wastewater treatment and resource recovery. Environ Sci Technol 2019;53:11618-35.

56. Forner-Cuenca A, Biesdorf J, Gubler L, Kristiansen PM, Schmidt TJ, Boillat P. Engineered water highways in fuel cells: radiation grafting of gas diffusion layers. Adv Mater 2015;27:6317-22.

57. Hu X, Wang R, Feng W, Xu C, Wei Z. Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: fundamentals, origins, and future strategies. J Energ Chem 2023;81:167-91.

58. Guo D, Yu H, Chi J, Zhao Y, Shao Z. Cu2S@NiFe layered double hydroxides nanosheets hollow nanorod arrays self-supported oxygen evolution reaction electrode for efficient anion exchange membrane water electrolyzer. Int J Hydrog Energy 2023;48:17743-57.

59. Guo D, Chi J, Yu H, Jiang G, Shao Z. Self-supporting NiFe layered double hydroxide “nanoflower” cluster anode electrode for an efficient alkaline anion exchange membrane water electrolyzer. Energies 2022;15:4645.

60. Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv Mater 2014;26:2683-7.

61. Xu W, Lu Z, Sun X, Jiang L, Duan X. Superwetting electrodes for gas-involving electrocatalysis. Acc Chem Res 2018;51:1590-8.

62. Cheng C, Deng M, Li L, Wei Z. The contribution of water molecules to the hydrogen evolution reaction. Sci China Chem 2022;65:1854-66.

63. Tang Y, Yang C, Xu X, et al. MXene Nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv Energ Mater 2022;12:2103867.

64. Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale 2021;13:12788-817.

65. Li Z, Hu R, Song J, et al. Gas-liquid-solid triphase interfacial chemical reactions associated with gas wettability. Adv Materials Inter 2021;8:2001636.

66. Andaveh R, Barati Darband G, Maleki M, Sabour Rouhaghdam A. Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: a comprehensive review. J Mater Chem A 2022;10:5147-73.

67. Shan X, Liu J, Mu H, et al. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angew Chem Int Ed Engl 2020;59:1659-65.

68. Kong A, Peng M, Gu H, et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem Eng J 2021;426:131234.

69. Lee J, Alam A, Park C, Yoon S, Ju H. Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells. Fuel 2022;315:123273.

70. Kale MB, Borse RA, Gomaa Abdelkader Mohamed A, Wang Y. Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Adv Funct Mater 2021;31:2101313.

71. Kong A, Peng M, Liu M, et al. Robust Pt/TiO2/Ni(OH)2 nanosheet arrays enable outstanding performance for high current density alkaline water electrolysis. Appl Catal B Environ 2022;316:121654.

72. Zhang D, Zeng K. Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis. Ind Eng Chem Res 2012;51:13825-32.

73. Dunnill CW, Rearden A, Mandale S, Glover K, Phillips R. Optimizing the design of an alkaline water splitting device test cell for renewable energy storage as hydrogen. Arch Chem Chem Eng 2020;2:1-9.

74. Charles W Dunnill GP, Dunnill C. Water Splitting test cell for renewable energy storage as hydrogen gas. J Fundam Renew Energy Appl 2015;5:188. Available from: https://cronfa.swan.ac.uk/Record/cronfa29225. [Last accessed on 25 Sep 2023]

75. David M, Ocampo-martínez C, Sánchez-peña R. Advances in alkaline water electrolyzers: a review. J Energy Storage 2019;23:392-403.

76. Phillips R, Dunnill C. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas. RSC Adv 2016;6:100643-51.

77. Teuku H, Alshami I, Goh J, Masdar MS, Loh KS. Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer. Intl J of Energy Res 2021;45:20583-600.

78. Wang J, Wang W, Wang C, Mao Z. Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment. Int J Hydrog Energy 2012;37:12069-73.

79. Dominici G, Gabriel B. Analytical study of over-voltages in alkaline electrolysis and their parametric dependencies through a multi-physical model. Intl J of Energy Res 2022;46:3295-323.

80. Jang D, Cho H, Kang S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Appl Energy 2021;287:116554.

81. Huang D, Xiong B, Fang J, et al. A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell. Appl Energy 2022;314:118987.

82. Wong XY, Zhuo Y, Shen Y. Numerical analysis of hydrogen bubble behavior in a zero-gap alkaline water electrolyzer flow channel. Ind Eng Chem Res 2021;60:12429-46.

83. Gao L, Yang L, Wang C, et al. Three-dimensional two-phase CFD simulation of alkaline electrolyzers. J Electrochem 2023.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/