REFERENCES
1. Chen T, Foo C, Edman Tsang SC. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem Sci 2020;12:517-32.
2. Chen H, Zhang B, Liang X, Zou X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chinese J Catal 2022;43:611-35.
3. Chen H, Zhang M, Wang Y, et al. Crystal phase engineering of electrocatalysts for energy conversions. Nano Res 2022;15:10194-217.
4. Liang J, Ma F, Hwang S, et al. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 2019;3:956-91.
5. Chen H, Wu Q, Wang Y, et al. Correction: d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chem Commun 2022;58:7730-40.
6. Nakaya Y, Furukawa S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem Rev 2023;123:5859-947.
7. Zhou M, Li C, Fang J. Noble-Metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem Rev 2021;121:736-95.
8. Furukawa S, Komatsu T, Shimizu K. Catalyst design concept based on a variety of alloy materials: a personal account and relevant studies. J Mater Chem A 2020;8:15620-45.
9. Brown OW, Borland JB, Johnston RA, Grills RC. Catalytic activity of intermetallic compounds in the gas phase reduction of nitrobenzene. J Phys Chem 1939;43:805-7.
10. Berk B, Brown OW. Catalytic activity of intermetallic compounds in the vapor-phase reduction of nitrobenzene. II. J Phys Chem 1942;46:964-8.
12. Huq AKMS, Rosenberg AJ, Makrides AC. Electrochemical behavior of nickel compounds: II. Anodic dissolution and oxygen reduction in perchlorate solutions. J Electrochem Soc 1964;111:278.
13. Justi EW, Ewe HH, Kalberlah AW, Saridakis NM, Schaefer MH. Electrocatalysis in the nickel titanium system. Energy Conversion 1970;10:183-7.
14. Walter C, Menezes PW, Driess M. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chem Sci 2021;12:8603-31.
15. Miles MH. Evaluation of electrocatalysts for water electrolysis in alkaline solutions. J Electroanal Chem Interf Electrochem 1975;60:89-96.
16. Jakšić M. Electrocatalysis of hydrogen evolution in the light of the brewer - engel theory for bonding in metals and intermetallic phases. Electrochimica Acta 1984;29:1539-50.
17. Lu PWT, Srinivasan S. Nickel-based alloys as electrocatalysts for oxygen evolution from alkaline solutions. J Electrochem Soc 1978;125:265-70.
18. Katoh A, Uchida H, Shibata M, Watanabe M. Design of electrocatalyst for CO2 reduction: V . effect of the microcrystalline structures of Cu-Sn and Cu-Zn alloys on the electrocatalysis of CO2 reduction. J Electrochem Soc 1994;141:2054-8.
19. Abghoui Y, Garden AL, Howalt JG, Vegge T, Skúlason E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT Guide for experiments. ACS Catal 2016;6:635-46.
20. Armbrüster M. Intermetallic compounds in catalysis - a versatile class of materials meets interesting challenges. Sci Technol Adv Mater 2020;21:303-22.
21. Rößner L, Armbrüster M. Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal 2019;9:2018-62.
22. Chen X, Liang C. Transition metal silicides: fundamentals, preparation and catalytic applications. Catal Sci Technol 2019;9:4785-820.
23. Jothi PR, Yubuta K, Fokwa BPT. A simple, general synthetic route toward nanoscale transition metal borides. Adv Mater 2018;30:e1704181.
25. Kumar A, Dutta S, Kim S, et al. Solid-State reaction synthesis of nanoscale materials: strategies and applications. Chem Rev 2022;122:12748-863.
26. Li J, Sun S. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc Chem Res 2019;52:2015-25.
27. Xiao W, Lei W, Gong M, Xin HL, Wang D. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal 2018;8:3237-56.
28. Yan Y, Du JS, Gilroy KD, Yang D, Xia Y, Zhang H. Intermetallic nanocrystals: syntheses and catalytic applications. Adv Mater 2017;29:1605997.
29. Furukawa S, Komatsu T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal 2017;7:735-65.
30. Menezes PW, Walter C, Hausmann JN, et al. Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach. Angew Chem Int Ed Engl 2019;58:16569-74.
31. Hausmann JN, Beltrán-Suito R, Mebs S, et al. Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-Hydroxymethylfurfural. Adv Mater 2021;33:e2008823.
32. Hume-Rothery W. Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin. J Inst Met 1926; 35:295-361.
33. Hume-Rothery W, Mabbott G, W, Channel Evans K. The freezing points, melting points, and solid solubility limits of the alloys of sliver and copper with the elements of the b sub-groups. Phil Trans R Soc Lond A 1934;233:1-97.
34. Mizutani U. The hume-rothery rules for structurally complex alloy phases. Surface properties and engineering of complex intermetallics. World scientific; 2010. pp. 323-99.
36. Yannello VJ, Fredrickson DC. Generality of the 18-n rule: intermetallic structural chemistry explained through isolobal analogies to transition metal complexes. Inorg Chem 2015;54:11385-98.
37. Fredrickson DC. Parallels in structural chemistry between the molecular and metallic realms revealed by complex intermetallic phases. Acc Chem Res 2018;51:248-57.
39. Schütz M, Gemel C, Klein W, Fischer RA, Fässler TF. Intermetallic phases meet intermetalloid clusters. Chem Soc Rev 2021;50:8496-510.
40. Miller GJ, Schmidt MW, Wang F, You T. Quantitative advances in the Zintl-Klemm formalism. In: Fässler TF, editor. Zintl Phases. Berlin: Springer Berlin Heidelberg; 2011. pp. 1-55.
41. Wang Y, He J, Liu C, Chong WH, Chen H. thermodynamics versus kinetics in nanosynthesis. Angew Chem Int Ed Engl 2015;54:2022-51.
42. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 2009;48:60-103.
44. You H, Yang S, Ding B, Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 2013;42:2880-904.
45. Alloyeau D, Ricolleau C, Mottet C, et al. Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat Mater 2009;8:940-6.
47. Kayser FX, Patterson JW. Sir William Chandler Roberts-Austen - His role in the development of binary diagrams and modern physical metallurgy. JPE 1998;19:11-8.
48. Clarke SM, Amsler M, Walsh JPS, et al. Creating binary Cu-Bi compounds via high-pressure synthesis: a combined experimental and theoretical study. Chem Mater 2017;29:5276-85.
49. Terayama K, Tamura R, Nose Y, et al. Efficient construction method for phase diagrams using uncertainty sampling. Phys Rev Materials 2019:3.
50. Oliynyk AO, Mar A. Discovery of intermetallic compounds from traditional to machine-learning approaches. Acc Chem Res 2018;51:59-68.
51. Kim HY, Joo SH. Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. J Mater Chem A 2020;8:8195-217.
53. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 1940;8:212-24.
54. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 1941;9:177-84.
55. Bai J, Yang L, Jin Z, Ge J, Xing W. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. Chinese J Catal 2022;43:1444-58.
56. Zhang J, Zhang L, Cui Z. Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chem Commun 2021;57:11-26.
57. Zhang S, Guo S, Zhu H, Su D, Sun S. Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. J Am Chem Soc 2012;134:5060-3.
58. Zhang S, Qi W, Huang B. Size effect on order-disorder transition kinetics of FePt nanoparticles. J Chem Phys 2014;140:044328.
59. Tzitzios V, Basina G, Gjoka M, et al. The effect of Mn doping in FePt nanoparticles on the magnetic properties of the L10 phase. Nanotechnology 2006;17:4270-3.
60. Qi W, Li Y, Xiong S, Lee ST. Modeling size and shape effects on the order-disorder phase-transition temperature of CoPt nanoparticles. Small 2010;6:1996-9.
61. Oezaslan M, Heggen M, Strasser P. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 2012;134:514-24.
62. Kim SI, Eom G, Kang M, et al. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection. Nanotechnology 2015; 26:245702.
63. Dai ZR, Sun S, Wang ZL. Phase transformation, coalescence, and twinning of monodisperse fept nanocrystals. Nano Lett 2001;1:443-7.
64. Supansomboon S, Dowd A, Gentle A, van der Lingen E, Cortie M. Thin films of PtAl2 and AuAl2 by solid-state reactive synthesis. Thin Solid Films 2015;589:805-12.
65. Kondoh K, Oginuma H, Kimura A, Matsukawa S, Aizawa T.
66. Winiarski M, Griveau J, Colineau E, et al. Synthesis and properties of AxV2Al20 (A = Th, U, Np, Pu) ternary actinide aluminides. J Alloys Compd 2017; 696:1113-9.
67. Shablinskaya K, Murashova E, Tursina A, Kurenbaeva Z, Yaroslavtsev A, Seropegin Y. Intermetallics La9Ru4In5 and Ce9Ru4Ga5 with new types of structures. Synthesis, crystal structures, physical properties. Intermetallics 2012;23:106-10.
68. Fernandes BB, Ramos ECT, Silva G, Ramos AS. Preparation of Nb-25Si, Nb-37.5Si, Nb-66.6Si powders by high-energy ball milling and subsequent heat treatment. J Alloys Compd 2007;434-435:509-13.
69. Alanko GA, Jaques B, Bateman A, Butt DP. Mechanochemical synthesis and spark plasma sintering of the cerium silicides. J Alloys Compd 2014;616:306-11.
70. Wang Z, Liu J, Wu X, et al. Engineering ordered vacancies and atomic arrangement over the intermetallic PdM/CNT (M = Pb, Sn, In) nanocatalysts for synergistically promoting electrocatalysis N2 fixation. Appl. Catal. B Environ 2022;314:121465.
71. Abe H, Matsumoto F, Alden LR, Warren SC, Abruña HD, DiSalvo FJ. Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles. J Am Chem Soc 2008;130:5452-8.
72. Chi M, Wang C, Lei Y, et al. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nat Commun 2015;6:8925.
73. Yu W, Zhang Y, Qin Y, et al. High‐Density frustrated lewis pair for high-performance hydrogen evolution. Adv. Energy Mater 2023;13:2203136.
74. Yoo TY, Yoo JM, Sinha AK, et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J Am Chem Soc 2020;142:14190-200.
75. Chen D, Li Z, Zhou Y, et al. Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction. Chem Commun 2020;56:4898-901.
76. Shen T, Gong M, Xiao D, et al. Engineering location and supports of atomically ordered L10-PdFe intermetallics for ultra-anticorrosion electrocatalysis. Adv Funct Materials 2022;32:2203921.
77. Yang CL, Wang LN, Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021;374:459-64.
78. Ji X, Lee KT, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2010;2:286-93.
79. He W, Zhang X, Zheng K, et al. Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic co oxidation. Angew Chem Int Ed Engl 2023;62:e202213365.
80. Bernal S, Calvino J, Gatica J, Larese C, López-cartes C, Pérez-omil J. Nanostructural evolution of a Pt/CeO2Catalyst reduced at increasing temperatures (473-1223 k): a hrem study. J Catal 1997;169:510-5.
81. Maligal-ganesh RV, Xiao C, Goh TW, et al. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: exemplified for furfural hydrogenation. ACS Catal 2016;6:1754-63.
82. Takahashi Y, Kadono T, Yamamoto S, et al. Orbital magnetic moment and coercivity of SiO2 -coated FePt nanoparticles studied by x-ray magnetic circular dichroism. Phys Rev B 2014:90.
83. Kim J, Rong C, Liu JP, Sun S. Dispersible ferromagnetic fept nanoparticles. Adv Mater 2009;21:906-9.
84. Song TW, Xu C, Sheng ZT, et al. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat Commun 2022;13:6521.
85. Chen H, Yu Y, Xin HL, et al. Coalescence in the thermal annealing of nanoparticles: an in situ STEM study of the growth mechanisms of ordered Pt-Fe nanoparticles in a KCL matrix. Chem Mater 2013;25:1436-42.
86. Chen H, Wang D, Yu Y, et al. A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. J Am Chem Soc 2012;134:18453-9.
87. Wang Z, Wu X, Liu J, et al. Ordered Vacancies on the body-centered cubic PdCu nanocatalysts. Nano Lett 2021;21:9580-6.
88. Meng C, Zhao G, Shi XR, Chen P, Liu Y, Lu Y. Oxygen-deficient metal oxides supported nano-intermetallic InNi3C(0.5) toward efficient CO2 hydrogenation to methanol. Sci Adv 2021;7:32.
89. Li Q, Wu L, Wu G, et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 2015;15:2468-73.
90. Kim J, Rong C, Lee Y, Liu JP, Sun S. From core/shell structured FePt/Fe3O4 /MgO to ferromagnetic FePt nanoparticles. Chem Mater 2008;20:7242-5.
91. Wang T, Liang J, Zhao Z, et al. Sub-6 nm Fully Ordered L10-Pt-Ni-Co Nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv Energy Mater 2019;9:1803771.
92. Chen H, Zhang M, Zhang K, et al. Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics. Small 2022;18:e2107371.
93. Chen H, Zou X. Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorg Chem Front 2020;7:2248-64.
94. Guo F, Wu Y, Ai X, et al. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem Commun 2019;55:8627-30.
95. Li Q, Zou X, Ai X, Chen H, Sun L, Zou X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv Energy Mater 2018;9:1803369.
96. Ai X, Zou X, Chen H, et al. Transition-Metal-Boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis. Angew Chem Int Ed Engl 2020;59:3961-5.
97. Yuan Y, Yang Z, Lai W, et al. Intermetallic compounds: liquid-phase synthesis and electrocatalytic applications. Chemistry 2021;27:16564-80.
98. Rong H, Mao J, Xin P, et al. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts. Adv Mater 2016;28:2540-6.
99. Liao H, Zhu J, Hou Y. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale 2014;6:1049-55.
100. Maksimuk S, Yang S, Peng Z, Yang H. Synthesis and characterization of ordered intermetallic PtPb nanorods. J Am Chem Soc 2007;129:8684-5.
101. Cable RE, Schaak RE. Low-Temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process. Chem Mater 2005;17:6835-41.
102. Guo J, Jiao S, Ya X, et al. Intermetallic nanocrystals: seed-mediated synthesis and applications in electrocatalytic reduction reactions. Chemistry 2022;28:e202202221.
103. Samanta A, Das S, Jana S. Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis. Nanoscale Adv 2020;2:417-24.
104. Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016;354:1410-4.
105. Chen W, Yu R, Li L, Wang A, Peng Q, Li Y. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew Chem Int Ed Engl 2010;49:2917-21.
106. Clarysse J, Moser A, Yarema O, Wood V, Yarema M. Size- and composition-controlled intermetallic nanocrystals via amalgamation seeded growth. Sci Adv 2021:7.
107. Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. Active site engineering in porous electrocatalysts. Adv Mater 2020;32:e2002435.
108. Zhang M, Zhang K, Ai X, et al. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. Chinese J Catal 2022;43:2987-3018.
109. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017; 355:eaad4998.
110. Chatenet M, Pollet BG, Dekel DR, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022;51:4583-762.
111. Li Z, Qi Z, Wang S, et al. In Situ Formed Pt3Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett 2019;19:5102-8.
112. Hu M, Cai Z, Yang S, et al. Direct growth of uniform bimetallic core-shell or intermetallic nanoparticles on carbon via a surface-confinement strategy for electrochemical hydrogen evolution reaction. Adv Funct Materials 2023;33:2212097.
113. Zhao P, Zhang B, Hao X, Yi W, Chen J, Cao Q. Rational design and synthesis of adjustable Pt and Pt-based 3D-nanoframeworks. ACS Appl Energy Mater 2022;5:942-50.
114. Lin C, Huang Z, Zhang Z, et al. Structurally ordered Pt3Co nanoparticles anchored on N-Doped graphene for highly efficient hydrogen evolution reaction. ACS Sustainable Chem Eng 2020;8:16938-45.
115. Zhang J, Zhang L, Liu J, et al. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nat Commun 2022;13:5497.
116. Zou X, Wang L, Ai X, Chen H, Zou X. Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics. Chem Commun 2020;56:3061-4.
117. Chen D, Zhu J, Pu Z, Mu S. Anion modulation of Pt-group metals and electrocatalysis applications. Chemistry 2021;27:12257-71.
118. Li Z, Xie Z, Chen H, et al. Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. J Chem Eng 2021;419:129568.
119. Ren Z, Jiang H, Yuan M, et al. Si regulation of hydrogen adsorption on nanoporous PdSi hybrids towards enhancing electrochemical hydrogen evolution activity. Inorg Chem Front 2023;10:1101-11.
120. Pu Z, Liu T, Zhang G, et al. General synthesis of Transition-Metal-Based Carbon-Group Intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater 2022;12:2200293.
121. Chen D, Pu Z, Wang P, et al. Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal 2022;12:2623-31.
122. Fu L, Li Y, Yao N, Yang F, Cheng G, Luo W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal 2020;10:7322-7.
123. Chen L, Guo X, Shao R, et al. Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction. Nano Energy 2021;81:105636.
124. Chen H, Ai X, Liu W, et al. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew Chem Int Ed Engl 2019;58:11409-13.
125. Shen S, Hu Z, Zhang H, et al. Highly active Si sites enabled by negative valent ru for electrocatalytic hydrogen evolution in LaRuSi. Angew Chem Int Ed Engl 2022;61:e202206460.
126. He Y, Wang TL, Zhang M, et al. Discovery and facile synthesis of a new silicon based family as efficient hydrogen evolution reaction catalysts: a computational and experimental investigation of metal monosilicides. Small 2021;17:e2006153.
127. Zhang H, Shi P, Ma X, et al. Construction of ordered atomic donor-acceptor architectures in bcc IrGa intermetallic compounds toward highly electroactive and stable overall water splitting. Adv. Energy Mater 2023;13:2202703.
128. Wang Y, Lv H, Sun L, Jia F, Liu B. Ordered mesoporous intermetallic trimetals for efficient and pH-Universal hydrogen evolution electrocatalysis. Adv. Energy Mate ;12:2201478.
129. Ji SJ, Xue HG, Suen NT. Lanthanide contraction regulates the HER activity of iron triad intermetallics in alkaline media. Chem Commun 2020;56:14303-6.
130. Song R, Han J, Okugawa M, et al. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production. Nat Commun 2022;13:5157.
131. Zhou Q, Hao Q, Li Y, et al. Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte. Nano Energy 2021;89:106402.
132. Li Y, Lu W, Du Y, et al. Co3W intermetallic compound as an efficient hydrogen evolution electrocatalyst for water splitting and electrocoagulation in non-acidic media. J Chem Eng 2022;438:135517.
133. Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy 2019;4:430-3.
134. Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 2016;116:3594-657.
135. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 2010;39:2184-202.
136. Lim J, Jung C, Hong D, et al. Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. J Mater Chem A 2022;10:7399-408.
137. Tetteh EB, Gyan-Barimah C, Lee HY, et al. Strained Pt(221)
138. Guan J, Yang S, Liu T, et al. Intermetallic FePt@PtBi core-shell nanoparticles for oxygen reduction electrocatalysis. Angew Chem Int Ed Engl 2021;60:21899-904.
139. Brown R, Vorokhta M, Khalakhan I, et al. Unraveling the surface chemistry and structure in highly active sputtered Pt3Y Catalyst films for the oxygen reduction reaction. ACS Appl Mater Interfaces 2020;12:4454-62.
140. Peera SG, Lee TG, Sahu AK. Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: an overview. Sustain Energy Fuels 2019;3:1866-91.
141. Zhu S, Yang L, Bai J, et al. Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction. Nano Res 2023;16:2035-40.
142. Vej-hansen UG, Escudero-escribano M, Velázquez-palenzuela A, et al. New platinum alloy catalysts for oxygen electroreduction based on alkaline earth metals. Electrocatalysis 2017;8:594-604.
143. Stamenkovic VR, Mun BS, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 2007;6:241-7.
144. Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014;343:1339-43.
145. Ding H, Wang P, Su C, et al. Epitaxial growth of ultrathin highly crystalline Pt-Ni nanostructure on a metal carbide template for efficient oxygen reduction reaction. Adv Mater 2022;34:e2109188.
146. Weber P, Weber DJ, Dosche C, Oezaslan M. Highly durable Pt-based core-shell catalysts with metallic and oxidized Co species for boosting the oxygen reduction reaction. ACS Catal 2022;12:6394-408.
147. Shi W, Park A, Kwon Y. Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability. J Electroanal Chem 2022;918:116451.
148. Cheng Q, Yang S, Fu C, et al. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy Environ Sci 2022;15:278-86.
149. Zeng WJ, Wang C, Yan QQ, Yin P, Tong L, Liang HW. Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat Commun 2022;13:7654.
150. Wu Z, Shan S, Xie Z, et al. Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction. ACS Catal 2018;8:11302-13.
151. Gamler JTL, Shin K, Ashberry HM, et al. Intermetallic Pd3Pb nanocubes with high selectivity for the 4-electron oxygen reduction reaction pathway. Nanoscale 2020;12:2532-41.
152. Feng Y, Shao Q, Ji Y, et al. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci Adv 2018;4:eaap8817.
153. Guo J, Gao L, Tan X, et al. Template-Directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew Chem Int Ed Engl 2021;60:10942-9.
154. Cui M, Yang C, Hwang S, et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci Adv 2022;8:eabm4322.
155. Birdja YY, Pérez-gallent E, Figueiredo MC, Göttle AJ, Calle-vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy 2019;4:732-45.
156. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal 2019;2:648-58.
157. Gao D, Arán-ais RM, Jeon HS, Roldan Cuenya B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal 2019;2:198-210.
158. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019;119:7610-72.
159. Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Alloy Nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater 2019;31:e1805617.
160. Gamler JTL, Ashberry HM, Skrabalak SE, Koczkur KM. Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance. Adv Mater 2018:e1801563.
161. Kortlever R, Peters I, Koper S, Koper MTM. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt Nanoparticles. ACS Catal 2015;5:3916-23.
162. Fan L, Xia C, Zhu P, Lu Y, Wang H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat Commun 2020;11:3633.
163. He B, Jia L, Cui Y, et al. SnSe2 nanorods on carbon cloth as a highly selective, active, and flexible electrocatalyst for electrochemical reduction of CO2 into formate. ACS Appl Energy Mater 2019;2:7655-62.
164. Yang Q, Zhao Y, Meng L, et al. Nanoporous intermetallic snte enables efficient electrochemical CO2 reduction into formate via promoting the fracture of metal-oxygen bonding. Small 2022;18:e2107968.
165. Wan WB, Zhou YT, Zeng SP, et al. Nanoporous intermetallic Cu3Sn/Cu Hybrid electrodes as efficient electrocatalysts for carbon dioxide reduction. Small 2021;17:e2100683.
166. Kim D, Xie C, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 2017;139:8329-36.
167. Jia L, Sun M, Xu J, et al. Phase-Dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew Chem Int Ed Engl 2021;60:21741-5.
168. Bagchi D, Raj J, Singh AK, et al. Structure-Tailored surface oxide on Cu-Ga intermetallics enhances CO2 reduction selectivity to methanol at ultralow potential. Adv Mater 2022;34:e2109426.
169. Liu D, Chen M, Du X, et al. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv Funct Mater 2021;31:2008983.
170. Chen X, Guo Y, Du X, et al. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv Energy Mater 2020;10:1903172.
171. Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The Challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 2015;8:2180-6.
172. Zhao J, Chen Z. Single mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 2017;139:12480-7.
173. Abghoui Y, Garden AL, Hlynsson VF, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys Chem Chem Phys 2015;17:4909-18.
174. Zhou J, Chen X, Guo M, Hu W, Huang B, Yuan D. Enhanced catalytic activity of bimetallic ordered catalysts for nitrogen reduction reaction by perturbation of scaling relations. ACS Catal 2023;13:2190-201.
175. Liu X, Jiao Y, Zheng Y, Qiao S. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal 2020;10:1847-54.
176. Ai X, Chen H, Liang X, et al. Metal-coordinating single-boron sites confined in antiperovskite borides for N2-to-NH3 catalytic conversion. ACS Catal 2022;12:2967-78.
177. Guo J, Wang H, Xue F, et al. Tunable synthesis of multiply twinned intermetallic Pd3Pb nanowire networks toward efficient N2 to NH3 conversion. J Mater Chem A 2019;7:20247-53.
178. Tong W, Huang B, Wang P, Shao Q, Huang X. Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. Natl Sci Rev 2021;8:nwaa088.
179. Chu K, Gu W, Li Q, Liu Y, Tian Y, Liu W. Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N2 fixation. J Energy Chem 2021;53:82-9.
180. Wang X, Luo M, Lan J, Peng M, Tan Y. Nanoporous intermetallic Pd3 Bi for efficient electrochemical nitrogen reduction. Adv Mater 2021;33:e2007733.
181. Wang T, Liu Q, Li T, et al. A magnetron sputtered Mo3Si thin film: an efficient electrocatalyst for N2 reduction under ambient conditions. J Mater Chem A 2021;9:884-8.
182. Li X, Zhao J, Su D. Structural Changes of intermetallic catalysts under reaction conditions. Small Structures 2021;2:2100011.
183. Li Z, Zhao L, Chen H, et al. Crystal phase-selective synthesis of intermetallic palladium borides and their phase-regulated (electro)catalytic properties. Catal Sci Technol 2022;12:1038-42.