REFERENCES

1. Wedlich-Söldner R, Betz T. Self-organization: the fundament of cell biology. Philos Trans R Soc Lond B Biol Sci 2018;373:20170103.

2. Hess B, Mikhailov A. Self-organization in living cells. Science 1994;264:223-4.

3. Kolisko M, Boscaro V, Burki F, Lynn DH, Keeling PJ. Single-cell transcriptomics for microbial eukaryotes. Curr Biol 2014;24:R1081-2.

4. Ma'ayan A, Jenkins SL, Neves S, et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 2005;309:1078-83.

5. White FM, Wolf-Yadlin A. Methods for the analysis of protein phosphorylation-mediated cellular signaling networks. Annu Rev Anal Chem 2016;9:295-315.

6. Vignes H, Vagena-Pantoula C, Vermot J. Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis. Semin Cell Dev Biol 2022;130:45-55.

7. Oltvai ZN, Barabási AL. Systems biology. Life's complexity pyramid. Science 2002;298:763-4.

8. Lehn JM. Perspectives in chemistry-steps towards complex matter. Angew Chem Int Ed Engl 2013;52:2836-50.

9. Han JD. Understanding biological functions through molecular networks. Cell Res 2008;18:224-37.

10. Gartner ZJ, Prescher JA, Lavis LD. Unraveling cell-to-cell signaling networks with chemical biology. Nat Chem Biol 2017;13:564-8.

11. Ashkenasy G, Hermans TM, Otto S, Taylor AF. Systems chemistry. Chem Soc Rev 2017;46:2543-54.

12. Ludlow RF, Otto S. Systems chemistry. Chem Soc Rev 2008;37:101-8.

13. Peyralans JJ, Otto S. Recent highlights in systems chemistry. Curr Opin Chem Biol 2009;13:705-13.

14. Corbett PT, Leclaire J, Vial L, et al. Dynamic combinatorial chemistry. Chem Rev 2006;106:3652-711.

15. Li J, Nowak P, Otto S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J Am Chem Soc 2013;135:9222-39.

16. Mattia E, Otto S. Supramolecular systems chemistry. Nat Nanotechnol 2015;10:111-9.

17. Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 2006;7:165-76.

18. Helwig B, van Sluijs B, Pogodaev AA, Postma SGJ, Huck WTS. Bottom-up construction of an adaptive enzymatic reaction network. Angew Chem Int Ed Engl 2018;57:14065-9.

19. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003;15:221-31.

20. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007;98:1512-20.

21. Kaufman LS. Transduction of blue-light signals. Plant Physiol 1993;102:333-7.

22. Almblad H, Randall TE, Liu F, et al. Bacterial cyclic diguanylate signaling networks sense temperature. Nat Commun 2021;12:1986.

23. Orij R, Brul S, Smits GJ. Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta 2011;1810:933-44.

24. Marchenko V, Sapru HN. Cardiovascular responses to chemical stimulation of the lateral tegmental field and adjacent medullary reticular formation in the rat. Brain Res 2003;977:247-60.

25. Angeli D, Ferrell JE Jr, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci U S A 2004;101:1822-7.

26. Chong SJF, Lai JXH, Qu J, et al. A feedforward relationship between active Rac1 and phosphorylated Bcl-2 is critical for sustaining Bcl-2 phosphorylation and promoting cancer progression. Cancer Lett 2019;457:151-67.

27. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 1991;13:569-74.

28. Szego CM. Mechanisms of hormone action: parallels in receptor-mediated signal propagation for steroid and peptide effectors. Life Sci 1984;35:2383-96.

29. Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 1993;261:361-4.

30. Pardridge WM, Landaw EM. Steady state model of 3,5,3'-triiodothyronine transport in liver predicts high cellular exchangeable hormone concentration relative to in vitro free hormone concentration. Endocrinology 1987;120:1059-68.

31. Samanta A, Hörner M, Liu W, Weber W, Walther A. Signal-processing and adaptive prototissue formation in metabolic DNA protocells. Nat Commun 2022;13:3968.

32. Deng J, Walther A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat Commun 2021;12:5132.

33. Lehn JM. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 2007;36:151-60.

34. Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014;43:1899-933.

35. Yue L, Wang S, Zhou Z, Willner I. Nucleic acid based constitutional dynamic networks: From basic principles to applications. J Am Chem Soc 2020;142:21577-94.

36. Wang S, Yue L, Willner I. Enzyme-guided selection and cascaded emergence of nanostructured constitutional dynamic networks. Nano Lett 2020;20:5451-7.

37. Zhou Z, Wang J, Willner I. Dictated emergence of nucleic acid-based constitutional dynamic networks by DNA replication machineries. J Am Chem Soc 2021;143:241-51.

38. Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 2013;3:130031.

39. He M, Lehn JM. Time-dependent switching of constitutional dynamic libraries and networks from kinetic to thermodynamic distributions. J Am Chem Soc 2019;141:18560-9.

40. Zhang DY, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 2011;3:103-13.

41. Zhang DY, Turberfield AJ, Yurke B, Winfree E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 2007;318:1121-5.

42. Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA nanostructures: From basic properties to applications. Angew Chem Int Ed Engl 2017;56:15210-33.

43. Gehring K, Leroy JL, Guéron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 1993;363:561-5.

44. Simmel FC, Yurke B, Singh HR. Principles and applications of nucleic acid strand displacement reactions. Chem Rev 2019;119:6326-69.

45. Walker MJ, Varani G. An allosteric switch primes sequence-specific DNA recognition. Cell 2019;176:4-6.

46. Yang H, Kim K, Li S, Pacheco J, Chen XS. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat Commun 2022;13:7498.

47. Osborne SE, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1997;1:5-9.

48. Breaker RR. Imaginary ribozymes. ACS Chem Biol 2020;15:2020-30.

49. McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. Chem Soc Rev 2021;50:8954-94.

50. Seeman NC. DNA in a material world. Nature 2003;421:427-31.

51. Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater 2018:3.

52. Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004;5:101-13.

53. Bray D. Molecular networks: the top-down view. Science 2003;301:1864-5.

54. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245-54.

55. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012;13:227-32.

56. Emmert-Streib F, Glazko GV. Network biology: a direct approach to study biological function. Wiley Interdiscip Rev Syst Biol Med 2011;3:379-91.

57. Purvis JE, Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell 2013;152:945-56.

58. Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014;114:2881-941.

59. Lee TI, Rinaldi NJ, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002;298:799-804.

60. Yue L, Wulf V, Wang S, Willner I. Evolution of nucleic-acid-based constitutional dynamic networks revealing adaptive and emergent functions. Angew Chem Int Ed Engl 2019;58:12238-45.

61. Yue L, Wang S, Willner I. Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed catalytic functions. Sci Adv 2019;5:eaav5564.

62. Zhou Z, Yue L, Wang S, Lehn JM, Willner I. DNA-based multiconstituent dynamic networks: hierarchical adaptive control over the composition and cooperative catalytic functions of the systems. J Am Chem Soc 2018;140:12077-89.

63. Wang S, Yue L, Shpilt Z, et al. Controlling the catalytic functions of DNAzymes within constitutional dynamic networks of DNA nanostructures. J Am Chem Soc 2017;139:9662-71.

64. Yue L, Wang S, Cecconello A, Lehn JM, Willner I. Orthogonal operation of constitutional dynamic networks consisting of DNA-tweezer machines. ACS Nano 2017;11:12027-36.

65. Wang S, Yue L, Li ZY, Zhang J, Tian H, Willner I. Light-induced reversible reconfiguration of DNA-based constitutional dynamic networks: Application to switchable catalysis. Angew Chem Int Ed Engl 2018;57:8105-9.

66. Yue L, Wang S, Willner I. Three-dimensional nucleic-acid-based constitutional dynamic networks: Enhancing diversity through complexity of the systems. J Am Chem Soc 2019;141:16461-70.

67. Jiang Y, Hao N. Memorizing environmental signals through feedback and feedforward loops. Curr Opin Cell Biol 2021;69:96-102.

68. Reeves GT. The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback. J Biol Eng 2019;13:62.

69. Patel A, Murray RM, Sen S. Assessment of robustness to temperature in a negative feedback loop and a feedforward loop. ACS Synth Biol 2020;9:1581-90.

70. Gao Y, Chen Y, Shang J, et al. Enzyme-free autocatalysis-driven feedback DNA circuits for amplified aptasensing of living cells. ACS Appl Mater Interfaces 2022;14:5080-9.

71. Shi K, Xie S, Tian R, et al. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Sci Adv 2021:7.

72. Novák B, Tyson JJ. Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 2008;9:981-91.

73. Liu H, Yang Q, Peng R, et al. Artificial signal feedback network mimicking cellular adaptivity. J Am Chem Soc 2019;141:6458-61.

74. Zhu S, Zhang Q. Implementing feedforward neural network using DNA strand displacement reactions. NANO 2021;16:2150001.

75. Yue L, Wang S, Wulf V, et al. Consecutive feedback-driven constitutional dynamic networks. Proc Natl Acad Sci U S A 2019;116:2843-8.

76. Bleris L, Xie Z, Glass D, Adadey A, Sontag E, Benenson Y. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol Syst Biol 2011;7:519.

77. Haley NEC, Ouldridge TE, Mullor Ruiz I, et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat Commun 2020;11:2562.

78. Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A 2004;101:6355-60.

79. Yue L, Wang S, Lilienthal S, et al. Intercommunication of DNA-based constitutional dynamic networks. J Am Chem Soc 2018;140:8721-31.

80. Wang C, Yue L, Willner I. Controlling biocatalytic cascades with enzyme-DNA dynamic networks. Nat Catal 2020;3:941-50.

81. Wang C, O'Hagan MP, Neumann E, Nechushtai R, Willner I. Integration of photocatalytic and dark-operating catalytic biomimetic transformations through DNA-based constitutional dynamic networks. Nat Commun 2021;12:4224.

82. Egolf DA. Statistical mechanics. Far from equilibrium. Science 2002;296:1813-5.

83. Goldbeter A. Dissipative structures in biological systems: bistability, oscillations, spatial patterns and waves. Philos Trans A Math Phys Eng Sci 2018;376:20170376.

84. Rizzoli SO. Synaptic vesicle recycling: steps and principles. EMBO J 2014;33:788-822.

85. David-Pfeuty T, Erickson HP, Pantaloni D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc Natl Acad Sci U S A 1977;74:5372-6.

86. Murrell M, Oakes PW, Lenz M, Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 2015;16:486-98.

87. Schaffter SW, Chen KL, O’Brien J, Noble M, Murugan A, Schulman R. Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks. Nat Chem 2022;14:1224-32.

88. Li Z, Wang J, Willner I. Transient out-of-equilibrium nucleic acid-based dissipative networks and their applications. Adv Funct Materials 2022;32:2200799.

89. Grosso E, Franco E, Prins LJ, Ricci F. Dissipative DNA nanotechnology. Nat Chem 2022;14:600-13.

90. De S, Klajn R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv Mater 2018;30:e1706750.

91. Te Brinke E, Groen J, Herrmann A, et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nat Nanotechnol 2018;13:849-55.

92. Liu Q, Li H, Yu B, et al. DNA-based dissipative assembly toward nanoarchitectonics. Adv Funct Materials 2022;32:2201196.

93. Sorrenti A, Leira-Iglesias J, Sato A, Hermans TM. Non-equilibrium steady states in supramolecular polymerization. Nat Commun 2017;8:15899.

94. Busiello DM, Liang S, Piazza F, De Los Rios P. Dissipation-driven selection of states in non-equilibrium chemical networks. Commun Chem 2021;4:16.

95. Wang S, Yue L, Wulf V, Lilienthal S, Willner I. Dissipative constitutional dynamic networks for tunable transient responses and catalytic functions. J Am Chem Soc 2020;142:17480-8.

96. Zhou Z, Ouyang Y, Wang J, Willner I. Dissipative gated and cascaded DNA networks. J Am Chem Soc 2021;143:5071-9.

97. Wang C, Zhou Z, Ouyang Y, et al. Gated dissipative dynamic artificial photosynthetic model systems. J Am Chem Soc 2021;143:12120-8.

98. Dehne H, Reitenbach A, Bausch AR. Transient self-organisation of DNA coated colloids directed by enzymatic reactions. Sci Rep 2019;9:7350.

99. Li N, Zhao Y, Liu Y, et al. Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. Nano Today 2021;41:101308.

100. Ouyang Y, Zhang P, Willner I. Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. Sci Adv 2022;8:eabn3534.

101. Dong J, Ouyang Y, Wang J, O'Hagan MP, Willner I. Assembly of dynamic gated and cascaded transient DNAzyme networks. ACS Nano 2022;16:6153-64.

102. Luo M, Xuan M, Huo S, et al. Four-dimensional deoxyribonucleic acid-gold nanoparticle assemblies. Angew Chem Int Ed Engl 2020;59:17250-5.

103. Ouyang Y, Zhang P, Manis-Levy H, Paltiel Y, Willner I. Transient dissipative optical properties of aggregated Au nanoparticles, CdSe/ZnS quantum dots, and supramolecular nucleic acid-stabilized Ag nanoclusters. J Am Chem Soc 2021;143:17622-32.

104. Li Z, Wang J, Zhou Z, O'Hagan MP, Willner I. Gated transient dissipative dimerization of DNA tetrahedra nanostructures for programmed DNAzymes catalysis. ACS Nano 2022;16:3625-36.

105. Wang J, Li Z, Willner I. Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models. Nat Commun 2022;13:4414.

106. Grosso E, Amodio A, Ragazzon G, Prins LJ, Ricci F. Dissipative synthetic DNA-based receptors for the transient loading and release of molecular cargo. Angew Chem Int Ed Engl 2018;57:10489-93.

107. Deng J, Liu W, Sun M, Walther A. Dissipative organization of DNA oligomers for transient catalytic function. Angew Chem Int Ed Engl 2022;61:e202113477.

108. Deng J, Walther A. Fuel-driven transient DNA strand displacement circuitry with self-resetting function. J Am Chem Soc 2020;142:21102-9.

109. Deng J, Walther A. ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nat Commun 2020;11:3658.

110. Reisler E, Egelman EH. Actin structure and function: what we still do not understand. J Biol Chem 2007;282:36133-7.

111. Grosso E, Ponzo I, Ragazzon G, Prins LJ, Ricci F. Disulfide-linked allosteric modulators for multi-cycle kinetic control of DNA-based nanodevices. Angew Chem Int Ed Engl 2020;59:21058-63.

112. Grosso E, Prins LJ, Ricci F. Transient DNA-based nanostructures controlled by redox inputs. Angew Chem Int Ed Engl 2020;59:13238-45.

113. Mariottini D, Del Giudice D, Ercolani G, Di Stefano S, Ricci F. Dissipative operation of pH-responsive DNA-based nanodevices. Chem Sci 2021;12:11735-9.

114. Chen XM, Hou XF, Bisoyi HK, et al. Light-fueled transient supramolecular assemblies in water as fluorescence modulators. Nat Commun 2021;12:4993.

115. Deng J, Bezold D, Jessen HJ, Walther A. Multiple light control mechanisms in ATP-fueled non-equilibrium DNA systems. Angew Chem Int Ed Engl 2020;59:12084-92.

116. Wang J, Li Z, Zhou Z, et al. DNAzyme- and light-induced dissipative and gated DNA networks. Chem Sci 2021;12:11204-12.

117. Chen Y, Wang M, Mao C. An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed Engl 2004;43:3554-7.

118. Grosso E, Ragazzon G, Prins LJ, Ricci F. Fuel-responsive allosteric DNA-based aptamers for the transient release of ATP and cocaine. Angew Chem Int Ed Engl 2019;58:5582-6.

119. Grosso E, Irmisch P, Gentile S, Prins LJ, Seidel R, Ricci F. Dissipative Control over the toehold-mediated DNA strand displacement reaction. Angew Chem Int Ed Engl 2022;61:e202201929.

120. Agarwal S, Franco E. Enzyme-driven assembly and disassembly of hybrid DNA-RNA nanotubes. J Am Chem Soc 2019;141:7831-41.

121. Gentile S, Del Grosso E, Pungchai PE, Franco E, Prins LJ, Ricci F. Spontaneous reorganization of DNA-based polymers in higher ordered structures fueled by RNA. J Am Chem Soc 2021;143:20296-301.

122. Bucci J, Irmisch P, Del Grosso E, Seidel R, Ricci F. Orthogonal enzyme-driven timers for DNA strand displacement reactions. J Am Chem Soc 2022;144:19791-8.

123. Abraham EH, Okunieff P, Scala S, et al. Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate. Science 1997;275:1324-6.

124. Finger TE, Danilova V, Barrows J, et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 2005;310:1495-9.

125. Shi Y, Tang M, Sun C, et al. ATP mimics pH-dependent dual peroxidase-catalase activities driving H2O2 decomposition. CCS Chem 2019;1:373-83.

126. Heinen L, Walther A. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Sci Adv 2019;5:eaaw0590.

127. Sun M, Deng J, Walther A. Communication and cross-regulation between chemically fueled sender and receiver reaction networks. Angew Chem Int Ed Engl 2023;62:e202214499.

128. Kim J, Winfree E. Synthetic in vitro transcriptional oscillators. Mol Syst Biol 2011;7:465.

129. Weitz M, Kim J, Kapsner K, Winfree E, Franco E, Simmel FC. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat Chem 2014;6:295-302.

130. Kim J, White KS, Winfree E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol 2006;2:68.

131. Schaffter SW, Schulman R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat Chem 2019;11:829-38.

132. Subsoontorn P, Kim J, Winfree E. Ensemble Bayesian analysis of bistability in a synthetic transcriptional switch. ACS Synth Biol 2012;1:299-316.

133. Franco E, Friedrichs E, Kim J, et al. Timing molecular motion and production with a synthetic transcriptional clock. Proc Natl Acad Sci U S A 2011;108:E784-93.

134. Fujii T, Rondelez Y. Predator-prey molecular ecosystems. ACS Nano 2013;7:27-34.

135. Baccouche A, Montagne K, Padirac A, Fujii T, Rondelez Y. Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 2014;67:234-49.

136. Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Syst Biol 2011;7:466.

137. Padirac A, Fujii T, Rondelez Y. Bottom-up construction of in vitro switchable memories. Proc Natl Acad Sci U S A 2012;109:E3212-20.

138. Zadorin AS, Rondelez Y, Gines G, et al. Synthesis and materialization of a reaction-diffusion French flag pattern. Nat Chem 2017;9:990-6.

139. Dehne H, Reitenbach A, Bausch AR. Reversible and spatiotemporal control of colloidal structure formation. Nat Commun 2021;12:6811.

140. Padirac A, Fujii T, Rondelez Y. Nucleic acids for the rational design of reaction circuits. Curr Opin Biotechnol 2013;24:575-80.

141. Xiong X, Zhu T, Zhu Y, et al. Molecular convolutional neural networks with DNA regulatory circuits. Nat Mach Intell 2022;4:625-35.

142. Qian L, Winfree E, Bruck J. Neural network computation with DNA strand displacement cascades. Nature 2011;475:368-72.

143. Okumura S, Gines G, Lobato-Dauzier N, et al. Nonlinear decision-making with enzymatic neural networks. Nature 2022;610:496-501.

144. Nimiritsky P, Novoseletskaya E, Eremichev R, et al. Self-organization provides cell fate commitment in MSC sheet condensed areas via ROCK-dependent mechanism. Biomedicines 2021;9:1192.

145. Davidson EH, Rast JP, Oliveri P, et al. A genomic regulatory network for development. Science 2002;295:1669-78.

146. Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 2010;11:633-43.

147. Omidvar M, Zdarta J, Sigurdardóttir SB, Pinelo M. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnol Adv 2022;54:107798.

148. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium-cancer signalling nexus. Nat Rev Cancer 2017;17:367-80.

149. Buchakjian MR, Kornbluth S. The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol 2010;11:715-27.

150. Peng R, Xu L, Wang H, et al. DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat Commun 2020;11:978.

151. Wang D, Yang Y, Chen F, Lyu Y, Tan W. Network topology-directed design of molecular CPU for cell-like dynamic information processing. Sci Adv 2022;8:eabq0917.

152. Buddingh’ BC, Elzinga J, van Hest JCM. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat Commun 2020;11:1652.

153. Mason AF, Buddingh’ BC, Williams DS, van Hest JCM. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J Am Chem Soc 2017;139:17309-12.

154. Elani Y, Law RV, Ces O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun 2014;5:5305.

155. Joesaar A, Yang S, Bögels B, et al. DNA-based communication in populations of synthetic protocells. Nat Nanotechnol 2019;14:369-78.

156. Yang S, Joesaar A, Bögels BWA, Mann S, de Greef TFA. Protocellular CRISPR/Cas-based diffusive communication using transcriptional RNA signaling. Angew Chem Int Ed Engl 2022;61:e202202436.

157. Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 2004;116:191-203.

158. Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science 2003;300:445-52.

159. You L, Cox RS 3rd, Weiss R, Arnold FH. Programmed population control by cell-cell communication and regulated killing. Nature 2004;428:868-71.

160. Bacchus W, Lang M, El-Baba MD, Weber W, Stelling J, Fussenegger M. Synthetic two-way communication between mammalian cells. Nat Biotechnol 2012;30:991-6.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/