REFERENCES
1. Sawin JL, Sverrisson F, Leidreiter A. Renewable energy and sustainable development; 2016. Available from: https://www.worldfuturecouncil.org/wp-content/uploads/2016/08/WFC_2016_Renewable-Energy-and-Sustainable-Development.pdf. [Last accessed on 4 Jul 2023]
2. Navalpotro P, Castillo-martínez E, Carretero-gonzález J. Sustainable materials for off-grid battery applications: advances, challenges and prospects. Sustain Energ Fuels 2021;5:310-31.
3. Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew Sust Energ Rev 2022;161:112279.
4. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.
5. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater 2013;23:970-86.
6. Li G, Lou X, Peng C, Liu C, Chen W. Interface chemistry for sodium metal anodes/batteries: a review. Chem Synth 2022;2:16.
7. Zhang L, Hu X, Wang Z, et al. Hybrid electrochemical energy storage systems: an overview for smart grid and electrified vehicle applications. Renew Sust Energ Rev 2021;139:110581.
8. Kebede AA, Kalogiannis T, Van Mierlo J, Berecibar M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sust Energ Rev 2022;159:112213.
9. Liu W, Lu W, Zhang H, Li X. Aqueous flow batteries: research and development. Chemistry 2019;25:1649-64.
11. Thaller LH. Electrically rechargeable redox flow cells. Available from: https://patents.google.com/patent/US3996064A/en [Last accessed on 4 Jul 2023]
12. Iwakiri I, Antunes T, Almeida H, Sousa JP, Figueira RB, Mendes A. Redox flow batteries: materials, design and prospects. Energies 2021;14:5643.
13. Park M, Ryu J, Wang W, Cho J. Material design and engineering of next-generation flow-battery technologies. Nat Rev Mater 2017:2.
15. Chen Q, Lv Y, Yuan Z, et al. Organic electrolytes for pH-neutral aqueous organic redox flow batteries. Adv Mater 2021;32:2108777.
16. Li Z, Lu YC. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv Mater 2020;32:e2002132.
17. Luo J, Hu B, Hu M, Zhao Y, Liu TL. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett 2019;4:2220-40.
18. Huskinson B, Marshak MP, Suh C, et al. A metal-free organic-inorganic aqueous flow battery. Nature 2014;505:195-8.
20. Feng R, Zhang X, Murugesan V, et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science 2021;372:836-40.
21. Hu B, DeBruler C, Rhodes Z, Liu TL. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J Am Chem Soc 2017;139:1207-14.
22. Liu T, Wei X, Nie Z, Sprenkle V, Wang W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv Energy Mater 2016;6:1501449.
24. Cao J, Tian J, Xu J, Wang Y. Organic flow batteries: recent progress and perspectives. Energy Fuels 2020;34:13384-411.
25. Kwabi DG, Ji Y, Aziz MJ. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem Rev 2020;120:6467-89.
26. Beh ES, De Porcellinis D, Gracia RL, Xia KT, Gordon RG, Aziz MJ. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett 2017;2:639-44.
27. Jing Y, Zhao EW, Goulet MA, et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat Chem 2022;14:1103-9.
28. Debruler C, Hu B, Moss J, et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 2017;3:961-78.
29. Li H, Fan H, Hu B, Hu L, Chang G, Song J. Spatial structure regulation: a rod-shaped viologen enables long lifetime in aqueous redox flow batteries. Angew Chem Int Ed Engl 2021;60:26971-7.
30. Hu S, Li T, Huang M, et al. Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries. Adv Mater 2021;33:e2005839.
31. Lin K, Gómez-bombarelli R, Beh ES, et al. A redox-flow battery with an alloxazine-based organic electrolyte. Nat Energy 2016:1.
32. Hollas A, Wei X, Murugesan V, et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat Energy 2018;3:508-14.
33. Orita A, Verde MG, Sakai M, Meng YS. A biomimetic redox flow battery based on flavin mononucleotide. Nat Commun 2016;7:13230.
34. Li H, Fan H, Ravivarma M, Hu B, Feng Y, Song J. A stable organic dye catholyte for long-life aqueous flow batteries. Chem Commun 2020;56:13824-7.
35. Fan H, Zhang J, Ravivarma M, et al. Radical charge population and energy: critical role in redox potential and cycling life of piperidine nitroxyl radical cathodes in aqueous zinc hybrid flow batteries. ACS Appl Mater Interfaces 2020;12:43568-75.
36. Hu B, Fan H, Li H, Ravivarma M, Song J. Five-membered ring nitroxide radical: a new class of high-potential, stable catholytes for neutral aqueous organic redox flow batteries. Adv Funct Mater 2021;31:2102734.
37. Liu Y, Goulet M, Tong L, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 2019;5:1861-70.
38. Fan H, Hu B, Li H, Ravivarma M, Feng Y, Song J. Conjugate-driven electron density delocalization of piperidine nitroxyl radical for stable aqueous zinc hybrid flow batteries. Angew Chem Int Ed Engl 2022;61:e202115908.
39. Fan H, Wu W, Ravivarma M, et al. Mitigating ring-opening to develop stable TEMPO catholytes for pH-neutral all-organic redox flow batteries. Adv Funct Materials 2022;32:2203032.
40. Zu X, Zhang L, Qian Y, Zhang C, Yu G. Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries. Angew Chem Int Ed Engl 2020;59:22163-70.
41. Pang S, Wang X, Wang P, Ji Y. Biomimetic Amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH. Angew Chem Int Ed Engl 2021;60:5289-98.
42. Xu J, Pang S, Wang X, Wang P, Ji Y. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 2021;5:2437-49.
43. Huang J, Hu S, Yuan X, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons. Angew Chem Int Ed Engl 2021;60:20921-5.
44. Wiberg C, Evenäs L, Busch M, Ahlberg E. Naphthalene diimides (NDI) in highly stable pH-neutral aqueous organic redox flow batteries. J Electroanal Chem 2021;896:115224.
45. Wiberg C, Owusu F, Wang E, Ahlberg E. Electrochemical evaluation of a napthalene diimide derivative for potential application in aqueous organic redox flow batteries. Energy Technol 2019;7:1900843.
46. Medabalmi V, Sundararajan M, Singh V, Baik M, Byon HR. Naphthalene diimide as a two-electron anolyte for aqueous and neutral pH redox flow batteries. J Mater Chem A 2020;8:11218-23.
47. Pinheiro D, Pineiro M, de Melo JSS. Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries. Commun Chem 2021;4:89.
48. Hu P, Lan H, Wang X, et al. Renewable-lawsone-based sustainable and high-voltage aqueous flow battery. Energy Storage Mater 2019;19:62-8.
49. Li Z, Jiang T, Ali M, Wu C, Chen W. Recent progress in organic species for redox flow batteries. Energy Storage Mater 2022;50:105-38.
50. Jin S, Jing Y, Kwabi DG, et al. A Water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett 2019;4:1342-8.
51. Ji Y, Goulet M, Pollack DA, et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv Energy Mater 2019;9:1900039.
52. Hu B, Luo J, Hu M, Yuan B, Liu TL. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte. Angew Chem Int Ed Engl 2019;58:16629-36.
53. Chai J, Wang X, Lashgari A, Williams CK, Jiang JJ. A pH-neutral, aqueous redox flow battery with a 3,600-cycle lifetime: micellization-enabled high stability and crossover suppression. ChemSusChem 2020;13:4069-77.
54. Lee W, Permatasari A, Kwon Y. Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple. J Mater Chem C 2020;8:5727-31.
55. Xia L, Huo W, Gao H, et al. Intramolecular hydrogen bonds induced high solubility for efficient and stable anthraquinone based neutral aqueous organic redox flow batteries. Jops 2021;498:229896.
56. Zhu Y, Li Y, Qian Y, et al. Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere. J Power Sources 2021;501:229984.
57. Xia L, Zhang Y, Wang F, et al. A low-potential and stable bis-dimethylamino-substituted anthraquinone for ph-neutral aqueous redox flow batteries. ChemElectroChem 2022:9.
58. Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US. TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett 2016;1:976-80.
59. Nambafu GS, Siddharth K, Zhang C, et al. An organic bifunctional redox active material for symmetric aqueous redox flow battery. Nano Energy 2021;89:106422.
60. Wei X, Xia G, Kirby B, et al. An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes. J Electrochem Soc 2016;163:A5150-3.
61. Long Y, Xu Z, Wang G, et al. A neutral polysulfide/ferricyanide redox flow battery. iScience 2021;24:103157.