REFERENCES

1. Oelkers EH, Hering JG, Zhu C. Water: is there a global crisis? Elements 2011;7:157-62.

2. Ejeian M, Wang RZ. Adsorption-based atmospheric water harvesting. Joule 2021;5:1678-703.

3. Gleick PH. Water in crisis: a guide to the world’s freshwater resources. Oxford University Press;1993. pp. 557.

4. Chen K, Tao Y, Shi W. Recent advances in water harvesting: a review of materials, devices and applications. Sustainability 2022;14:6244.

5. Liu X, Beysens D, Bourouina T. Water harvesting from air: current passive approaches and outlook. ACS Mater Lett 2022;4:1003-24.

6. Service RF. Desalination freshens up. Science 2006;313:1088-90.

7. Awual MR. Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample. Composites Part B 2019;172:387-96.

8. Awual MR. Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. J. Environ Chem Eng 2019;7:103124.

9. Salman MS, Znad H, Hasan N, MM. Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem J 2021;160:105765.

10. Shahat A, Kubra KT, Salman MS, Hasan MN, Hasan M. Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem J 2021;164:105967.

11. Awual MR. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J 2015;266:368-75.

12. Lord J, Thomas A, Treat N, et al. Global potential for harvesting drinking water from air using solar energy. Nature 2021;598:611-7.

13. Hanikel N, Prévot MS, Yaghi OM. MOF water harvesters. Nat Nanotechnol 2020;15:348-55.

14. Dods MN, Weston SC, Long JR. Prospects for simultaneously capturing carbon dioxide and harvesting water from air. Adv Mater 2022;34:2204277.

15. Lu H, Shi W, Guo Y, Guan W, Lei C, Yu G. Materials engineering for atmospheric water harvesting: progress and perspectives. Adv Mater 2022;34:2110079.

16. Chen Z, Song S, Ma B, et al. Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Energy Mater Sol Cells 2021;230:111233.

17. Bagheri F. Performance investigation of atmospheric water harvesting systems. Water Resour Ind 2018;20:23-8.

18. Salehi AA, Ghannadi-Maragheh M, Torab-Mostaedi M, Torkaman R, Asadollahzadeh M. A review on the water-energy nexus for drinking water production from humid air. Renew Sustain Energy Rev 2020;120:109627.

19. Furukawa H, Gándara F, Zhang Y-B, et al. Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 2014;136:4369-81.

20. Xu W, Yaghi OM. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent Sci 2020;6:1348-54.

21. Byun Y, Je SH, Talapaneni SN, Coskun A. Advances in porous organic polymers for efficient water capture. Chem Eur J 2019;25:10262-83.

22. Shi W, Guan W, Lei C, Yu G. Sorbents for atmospheric water harvesting: from design principles to applications. Angew Chem Int Ed 2022;61:e202211267.

23. Metrane A, Delhali A, Ouikhalfan M, Assen AH, Belmabkhout Y. Water vapor adsorption by porous materials: from chemistry to practical applications. J Chem Eng Data 2022;67:1617-53.

24. Shafeian N, Ranjbar AA, Gorji TB. Progress in atmospheric water generation systems: a review. Renew Sust Energ Rev 2022;161:112325.

25. Li X, Li Z, Xia Q, Xi H. Effects of pore sizes of porous silica gels on desorption activation energy of water vapour. Appl Therm Eng 2007;27:869-76.

26. Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM. Practical water production from desert air. Sci Adv 2018;4:eaat3198.

27. Nguyen HL, Hanikel N, Lyle SJ, Zhu C, Proserpio DM, Yaghi OM. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc 2020;142:2218-21.

28. Yilmaz G, Meng FL, Lu W, et al. Autonomous atmospheric water seeping MOF matrix. Sci Adv 2020;6:eabc8605.

29. Zhang S, Fu J, Das S, Ye K, Zhu W, Ben T. Crystalline porous organic salt for ultrarapid adsorption/desorption-based atmospheric water harvesting by dual hydrogen bond system. Angew Chem Int Ed 2022;61:e202208660.

30. Tang S-Y, Wang Y-S, Yuan Y-F, et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Mater 2022;37:237-44.

31. Bulang WG. Solar water recovery from the air. Solar Energy Int Prog 1938;3:1526-45.

32. Aristov TI, Tokarev MM, Gordeeva LG, Snytnikov VN, Parmon VN. New composite sorbents for solar-driven technology of fresh water production from the atmosphere. Solar Energy 1999;66:165-8.

33. Ji JG, Wang RZ, Li LX. New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination 2007;212:176-82.

34. Kim H, Yang S, Rao R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017;356:430-4.

35. Kallenberger PA, Fröba M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Commun Chem 2018;28:1.

36. Li R, Shi Y, Alsaedi M, Wu W, Shi L, Wang P. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ Sci Technol 2018;52:11367-77.

37. Matsumoto K, Sakikawa N, Miyata T. Thermo-responsive gels that absorb moisture and ooze water. Nat Commun 2018;9:2315.

38. Lu Z, Wang R, Xia Z, Experimental analysis of an adsorption air conditioning with micro-porous silica gel-water. Appl Therm Eng 2013;50:1015-20.

39. Tashiro Y, Kubo M, Katsumi Y, Meguro T, Komeya K. Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system. J Mater Sci 2004;39:1315-9.

40. Ng KC, Chua HT, Chung CY, et al. Experimental investigation of the silica gel-water adsorption isotherm characteristics. Appl Therm Eng 2001;21:1631-42.

41. Ng EP, Mintova S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Micropor Mesopor Mater 2008;114:1-26.

42. Resasco DE, Crossley PS, Wang B, White JL. Interaction of water with zeolites: a review. Catal Rev Sci Eng 2021;63:302-62.

43. Wu WD, Zhang H, Men CL. Performance of a modified zeolite 13X-water adsorptive cooling module powered by exhaust waste heat. Int J Therm Sci 2011;50:2042-9.

44. Henninger SK, Ernst SJ, Gordeeva L, et al. New materials for adsorption heat transformation and storage. Renew Energy 2017;110:59-68.

45. Wynnyk KG, Hojjati B, Marriott RA. High-pressure sour gas and water adsorption on zeolite 13X. Ind Eng Chem Res 2018;57:15357-65.

46. Wynnyk KG, Hojjati B, Marriott RA. Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A, zeolite 4A, and silica gel. J Chem Eng Data 2019;64:3156-63.

47. Krajnc A, Varlec J, Mazaj M, Ristić A, Logar NZ, Mali G. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv Energy Mater 2017;7:1601815.

48. Kloprogge JT, Duong LV, Frost RL. A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environ Geol 2005;47:967.

49. Zhu HY, Gao WH, Vansant EF. The porosity and water adsorption of alumina pillared montmorillonite. J Colloid Interf Sci 1995;171:377.

50. Aso M, Ito K, Sugino H, et al. Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous organosilica by differential scanning calorimetry, X-ray diffraction, and quasi-elastic neutron scattering. Pure Appl Chem 2013;85:289-305.

51. Mietner JB, Brieler FJ, Lee YJ, Fröba M. Properties of water confined in periodic mesoporous organosilicas: nanoimprinting the local structure. Angew Chem Int Ed 2017;56:12348-51.

52. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341:1230444.

53. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995;378:703-6.

54. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 2020;120:1438-511.

55. Qian Q, Asinger QA, Lee MJ, et al. MOF-based membranes for gas separations. Chem Rev 2020;120:8161-266.

56. Xie S, Monnens W, Wan K, et al. Cathodic electrodeposition of MOF films using hydrogen peroxide. Angew Chem Int Ed 2021;60:24950-7.

57. Gutiérrez M, Zhang Y, Tan JC. Confinement of luminescent guests in metal-organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@MOF systems. Chem Rev 2022;122:10438-83.

58. Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmartí-Luis J. Metal-organic frameworks in motion. Chem Rev 2020;120:11175-93.

59. He B, Zhang Q, Pan Z. Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion. Chem Rev 2022;122:10087-125.

60. Peng Y, Tan Q, Huang H, et al. Customization of functional MOFs by a modular design strategy for target applications. Chem Synth 2022;2:15.

61. Li H, Li C, Wang Y, et al. Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries. Chem Synth 2022;2:8.

62. Nijem N, Canepa P, Kaipa U, et al. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework. J Am Chem Soc 2013;135:12615-26.

63. Nguyen JG, Cohen SM. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. J Am Chem Soc 2010;132:4560-1.

64. Zhang JP, Zhu AX, Lin RB, Qi XL, Chen XM. Pore surface tailored SOD-type metal-organic zeolites. Adv Mater 2011;23:1268-71.

65. Yang Q, Vaesen S, Ragon F, et al. A water stable metal-organic framework with optimal features for CO2 capture. Angew Chem Int Ed 2013;52:10316-20.

66. Seo YK, Yoon JW, Lee JS, et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv Mater 2012;24:806-10.

67. Wade CR, Corrales-Sanchez T, Narayan TC, Dincă M. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties. Energy Environ Sci 2013;6:2172-7.

68. Wagner JC, Hunter KM, Paesani F, Xiong W. Water capture mechanisms at zeolitic imidazolate framework interfaces. J Am Chem Soc 2021;143:21189-94.

69. Choi HJ, Dincă M, Dailly A, Long JR. Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy Environ Sci 2010;3:117-23.

70. Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008;319:939-43.

71. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006;103:10186-91.

72. Tian D, Xu J, Xie ZJ, et al. The first example of hetero-triple-walled metal-organic frameworks with high chemical stability constructed via flexible integration of mixed molecular building blocks. Adv Sci 2016;3:1500283.

73. Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005;309:2040-2.

74. Chen Z, Li P, Zhang X, et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J Am Chem Soc 2019;141:2900-5.

75. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 2014;43:5594-617.

76. Liu X, Wang X, Kapteijn F. Water and metal-organic frameworks: from interaction toward utilization. Chem Rev 2020;120:8303-77.

77. Dietzel PDC, Johnsen RE, Blom R, Fjellvåg H. Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. Chem Eur J 2008;14:2389-97.

78. Ko N, Choi PG, Hong J, et al. Tailoring the water adsorption properties of MIL-101 metal-organic frameworks by partial functionalization. J Mater Chem A 2015;3:2057-64.

79. Hanikel N, Pei X, Chheda S, et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021;374:454-9.

80. Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S. Effect of functional groups in MIL-101 on water sorption behavior. Micropor Mesopor Mater 2012;157:89-93.

81. Deria P, Chung YG, Snurr RQ, Hupp JT, Farha OK. Water stabilization of Zr6-based metal-organic frameworks via solvent-assisted ligand incorporation. Chem Sci 2015;6:5172-6.

82. Laha S, Maji TK. Binary/Ternary MOF nanocomposites for multi-environment indoor atmospheric water harvesting. Adv Funct Mater 2022;32:2203093.

83. Xu J, Li T, Chao J, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew Chem Int Ed 2020;59:5202-10.

84. Hu Y, Fang Z, Wan X, et al. Carbon nanotubes decorated hollow metal-organic frameworks for efficient solar-driven atmospheric water harvesting. Chem Eng J 2022;430:133086.

85. Abtab SMT, Alezi D, Bhatt PM, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 2018;4:94-105.

86. Wu Q, Su W, Li Q, Tao Y, Li H. Enabling continuous and improved solar-driven atmospheric water harvesting with Ti3C2-incorporated metal-organic framework monoliths. ACS Appl Mater Interf 2021;13:38906-15.

87. Rieth AJ, Wright AM, Skorupskii G, Mancuso JL. Hendon CH, Dincă M. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal-organic frameworks. J Am Chem Soc 2019;141:13858-66.

88. Karmakar A, Mileo PG, Bok I, et al. Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release. Angew Chem Int Ed 2020;59:11003-9.

89. Garzón-Tovar L, Pérez-Carvajal J, Imaz I, Maspoch D. Composite salt in porous metal-organic frameworks for adsorption heat transformation. Adv Funct Mater 2017;27:1606424.

90. Permyakova A, Wang S, Courbon E, et al. Design of salt-metal organic framework composites for seasonal heat storage applications. J Mater Chem A 2017;5:12889-98.

91. Hanikel N, Prévot MS, Fathieh F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent Sci 2019;5:1699-706.

92. Wang L, Wang K, An HT, Huang H, Xie LH, Li JR. A hydrolytically stable Cu(II)-based metal-organic framework with easily accessible ligands for water harvesting. ACS Appl Mater Interf 2021;13:49509-18.

93. Tao Y, Wu Q, Huang C, et al. Sandwich-structured carbon paper/metal-organic framework monoliths for flexible solar-powered atmospheric water harvesting on demand. ACS Appl Mater Interf 2022;14:10966-75.

94. Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev 2020;120:8814-933.

95. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310:1166-70.

96. Freund R, Zaremba O, Arnauts G, et al. The current status of MOF and COF applications. Angew Chem Int Ed 2021;60:23975-4001.

97. Das S, Heasman P, Ben T, Qiu S. Porous organic materials: strategic design and structure-function correlation. Chem Rev 2017;117:1515-63.

98. Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev 2020;49:1357-84.

99. Stegbauer L, Hahn MW, Jentys A, et al. Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chem Mater 2015;27:7874-81.

100. Tan KT, Tao S, Huang N, Jiang D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat Commun 2021;12:6747.

101. Biswal BP, Kandambeth S, Chandra S, et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J Mater Chem A 2015;3:23664-9.

102. Chen Y, Shi Z-L, Wei L, et al. Guest-dependent dynamics in a 3D covalent organic framework. J Am Chem Soc 2019;141:3298-303.

103. Pérez-Carvajal J, Boix G, Imaz I, Maspoch D. The imine-based COF TpPa-1 as an efficient cooling adsorbent that can be regenerated by heat or light. Adv Energy Mater 2019;9:1901535.

104. Wang X, Chen L, Chong SY, et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat Chem 2018;10:1180-9.

105. Ma J, Fu X-B, Li Y, Xia T, Pan L, Yao Y-F. Solid-state NMR study of adsorbed water molecules in covalent organic framework materials. Micropor Mesopor Mater 2020;305:110287.

106. Li W, Xia X, Li S. Screening of covalent-organic frameworks for adsorption heat pumps. ACS Appl Mater Interf 2020;12:3265-73.

107. Gilmanova L, Bon V, Shupletsov L, et al. Chemically stable carbazole-based imine covalent organic frameworks with acidochromic response for humidity control applications. J Am Chem Soc 2021;143:18368-73.

108. Karak S, Kandambeth S, Biswal BP, et al. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J Am Chem Soc 2017;139:1856-62.

109. Jiang S, Meng L, Ma W, et al. Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting. Mater Chem Front 2021;5:4193-201.

110. Nguyen HL, Gropp C, Hanikel N, Möckel A, Lund A, Yaghi OM. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS Cent Sci 2022;8:926-32.

111. Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev 2012;112:2853-88.

112. Deng F, Chen Z, Wang C, Xiang C, Poredoš P. Wang R. Hygroscopic porous polymer for sorption-based atmospheric water harvesting. . Adv Sci 2022;9:2204724.

113. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev 2020;120:7642-707.

114. Nandakumar DK, Zhang Y, Ravi SK, Guo N, Zhang C, Tan SC. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv Mater 2019;31:1806730.

115. Yang L, Ravi SK, Nandakumar DK, et al. A hybrid artificial photocatalysis system splits atmospheric water for simultaneous dehumidification and power generation. Adv Mater 2019;31:1902963.

116. Zhao F, Zhou X, Liu Y, Shi Y, Dai Y, Yu G. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv Mater 2019;31:1806446.

117. Yang J, Zhang X, Qu H, et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv Mater 2020;32:2002936.

118. Lei C, Guo Y, Guan W, Lu H, Shi W, Yu G. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew Chem Int Ed 2022;61:e202200271.

119. Ni F, Xiao P, Zhang C, Chen T. Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter 2022;5:2624-58.

120. Hou Y, Sheng Z, Fu C, Kong J, Zhang X. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat Commun 2022;13:1227.

121. Chang X, Li S, Li N, et al. Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water harvesting and solar-powered irrigation. J Mater Chem A 2022;10:18170-84.

122. Ni F, Qiu N, Xiao P, et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting. Angew Chem Int Ed 2020;59:19237-46.

123. Aleid S, Wu M, Li R, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater Lett 2022;4:511-20.

124. Entezari A, Ejeian M, Wang R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater Lett 2020;2:471-7.

125. Xu J, Li T, Yan T, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ Sci 2021;14:5979-94.

126. Lu K, Liu C, Liu J, et al. Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water harvesting. ACS Appl Mater Interf 2022;14:33032-40.

127. Wang M, Sun T, Wan D, et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy 2021;80:105569.

128. Li R, Wu M, Shi Y, et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted bulk water sources. J Mater Chem A 2021;9:14731-40.

129. Yao H, Zhang P, Huang Y, Cheng H, Li C, Qu L. Highly efficient clean water production from contaminated air with a wide humidity range. Adv Mater 2020;32:1905875.

130. Yu S, Xing GL, Chen LH, Ben T, Su BL. Crystalline porous organic salts: from micropore to hierarchical pores. Adv Mater 2020;32:2003270.

131. Xing G, Bassanetti I, Bracco S, et al. A double helix of opposite charges to form channels with unique CO2 selectivity and dynamics. Chem Sci 2019;10:730-6.

132. Zhao Y, Fan, Pei C, et al. Colossal negative linear compressibility in porous organic salts. J Am Chem Soc 2020;142:3593-9.

133. Comotti A, Bracco S, Yamamoto A, et al. Engineering switchable rotors in molecular crystals with open porosity. J Am Chem Soc 2014;136:618-21.

134. Xiao W, Hu C, Ward MD. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded framework. J Am Chem Soc 2014;136:14200-6.

135. Liang WB, Carraro F, Solomon MB, et al. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J Am Chem Soc 2019;141:14298-305.

136. Ami T, Oka K, Tsuchiya K, Tohnai N. Porous organic salts: diversifying void structures and environments. Angew Chem Int Ed 2022;61:e202202597.

137. Boer SA, Conte L, Tarzia A, et al. Water sorption controls extreme single-crystal-to-single-crystal molecular reorganization in hydrogen bonded organic frameworks. Chem Eur J 2022;28:e202201929.

138. Xing G, Yan T, Das S, Ben T, Qiu S. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed 2018;57:5345-49.

139. Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials. Chem Rev 2020;120:9363-419.

140. Lodewyckx P. The effect of water uptake in ultramicropores on the adsorption of water vapour in activated carbon. Carbon N Y 2010;48:2549-53.

141. Tao Y, Muramatsu H, Endo M, Kaneko K. Evidence of water adsorption in hydrophobic nanospaces of highly pure double-walled carbon nanotubes. J Am Chem Soc 2010;132:1214-5.

142. Yuan M, Gao M, Shi Q, Dong J. Understanding the characteristics of water adsorption in zeolitic imidazolate framework-derived porous carbon materials. Chem Eng J 2020;379:122412.

143. Zhang E, Hao GP, Casco ME, Bon V, Grätz S, Borchardt L. Nanocasting in ball mills - combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. J Mater Chem A 2018;6:859-65.

144. Liu L, Tan S, Horikawa T, Do DD, Nicholson D, Liu J. Water adsorption on carbon - a review. Adv Colloid Interf Sci 2017;250:64-78.

145. Hao G-P, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture. Angew Chem Int Ed 2015;54:1941-5.

146. Entezari A, Ejeian M, Wang RZ. Extraordinary air water harvesting performance with three phase sorption. Mater Today Energy 2019;13:362-73.

147. Li R, Shi Y, Wu M, Hong S, Wang P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 2020;67:104255.

148. Legrand U, Klassen D, Watson S, et al. Nanoporous sponges as carbon-based sorbents for atmospheric water generation. Ind Eng Chem Res 2021;60:12923-12933.

149. Kumar KV, Preuss K, Guo ZX, Titirici MM. Understanding the hydrophilicity and water adsorption behavior of nanoporous nitrogen-doped carbons. J Phys Chem C 2016;120:18167-79.

150. Byun Y, Coskun A. Epoxy-functionalized porous organic polymers via the diels-alder cycloaddition reaction for atmospheric water capture. Angew Chem Int Ed 2018;57:3173-7.

151. Song Y, Xu N, Liu G, et al. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat Nanotechnol 2022;17:857-63.

152. Guo Y, Guan W, Lei C, Lu H, Shi W, Yu G. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat Commun 2022;13:2761.

153. Wright AM, Rieth AJ, Yang S, Wang EN, Dincă M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal-organic frameworks. Chem Sci 2018;9:3856-9.

154. Wang H, Yang H, Woon R, Lu Y, Diao Y, D’Arcy JM. Microtubular PEDOT-coated bricks for atmospheric water harvesting. ACS Appl Mater Interf 2021;13:34671-8.

155. Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010;329:424-8.

156. Hu Y, Fang Z, Wan X, et al. Ferrocene dicarboxylic acid ligand-exchanged hollow MIL-101(Cr) nanospheres for solar-driven atmospheric water harvesting. ACS Sustain Chem Eng 2022;10:6446-55.

157. Wang J, Deng C, Zhong G, et al. High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural sunlight. Cell Rep Phys Sci 2022;3:100954.

158. Zhang Z, Fu H, Li Z, et al. Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and applications. Chem Eng J 2022;439:135756.

159. Li J, Hu Y, Vlassak J, Suo Z. Experimental determination of equations of state for ideal elastomeric gels. Soft Matter 2012;8:8121.

160. Taheri E, Fatehizadeh A, Lima EC, Rezakazemi M. High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution. Chemosphere 2022;295:133850.

161. Messaoudi NE, Khomri ME, Fernine Y, et al. Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment. Groundw Sustain Dev 2022;16:100728.

162. LaPotin A, Kim H, Rao SR, Wang EN. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc Chem Res 2019;52:1588-97.

163. Dehmani Y, Dridi D, Lamhasni T, Abouarnadasse S, Chtourou R, Lima EC. Review of phenol adsorption on transition metal oxides and other adsorbents. J Water Process Eng 2022;49:102965.

164. Bilal M, Sultan M, Morosuk T, et al. Adsorption-based atmospheric water harvesting: a review of adsorbents and systems. Int Commun Heat Mass Transf 2022;133:105961.

165. Kim S, Liang Y, Kang S, Choi H. Solar-assisted smart nanofibrous membranes for atmospheric water harvesting. Chem Eng J 2021;425:131601.

166. Lyu T, Wang Z, Liu R, Chen K, Liu H, Tian Y. Macroporous hydrogel for high-performance atmospheric water harvesting. ACS Appl Mater Interf 2022;14:32433-43.

167. Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater 2018;17:935-42.

168. Wang H-J, Kleinhammes A, McNicholas TP, Liu J, Wu Y. Water adsorption in nanoporous carbon characterized by in situ NMR: measurements of pore size and pore size distribution. J Phys Chem C 2014;118:8474-80.

169. Zhang X, Song B, Jiang L. From dynamic superwettability to ionic/molecular superfluidity. Acc Chem Res 2022;55:1195-204.

170. Kapitza P. Viscosity of liquid helium below the λ-point. Nature 1938;141:74.

171. Allen JF, Misener A. Flow of liquid helium II. Nature 1938;141:75.

172. Gasparini FM, Kimball MO, Mooney KP, Diaz-Avila M. Finite-size scaling of He 4 at the superfluid transition. Rev Mod Phys 2008;80:1009.

173. Kolomeisky AB. Channel-facilitated molecular transport across membranes: attraction, repulsion, and asymmetry. Phys Rev Lett 2007;98:048105.

174. Zhang X, Song B, Jiang L. Driving force of molecular/ionic superfluid formation. CCS Chem 2021;3:1258-66.

175. Wu K, Chen Z, Li J, Li X, Xu J, Dong X. Wettability effect on nanoconfined water flow. Proc Natl Acad Sci USA 2017;114:3358-63.

176. Yaghi OM, Prevot MS, Hanikel N, Kapustin EA, Fathieh F. Active atmospheric moisture harvester; 0. Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2020036905 [Last accessed on 20 Feb 2023].

177. Yaghi OM, Fathieh F, Kalmutzki MJ, Kapustin EA. Atmospheric moisture harvester; 0. Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2019152962&_cid=JP1-LEC9J1-00905-1 [Last accessed on 20 Feb 2023].

178. Kim H, Yang S, Rao SR, et al. Sorption-based atmospheric water harvesting device; 0. Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=US249457722&_cid=JP1-LEC9LR-04379-1 [Last accessed on 20 Feb 2023].

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/