REFERENCES
1. Quasdorf KW, Overman LE. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 2014;516:181-91.
2. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23.
3. Hazra A, Bharitkar YP, Chakraborty D, et al. Regio- and stereoselective synthesis of a library of bioactive dispiro-oxindolo/acenaphthoquino andrographolides
4. Hu R, Huang JL, Yuan FY, et al. Crotonianoids A-C, Three unusual tigliane diterpenoids from the seeds of croton tiglium and their anti-prostate cancer activity. J Org Chem 2022;87:9301-6.
5. Liu J, Flegel J, Otte F, et al. Combination of pseudo-natural product design and formal natural product ring distortion yields stereochemically and biologically diverse pseudo-sesquiterpenoid alkaloids. Angew Chem Int Ed Engl 2021;60:21384-95.
6. Alemán J, Cabrera S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem Soc Rev 2013;42:774-93.
7. Zong L, Tan CH. Phase-transfer and ion-pairing catalysis of pentanidiums and bisguanidiniums. Acc Chem Res 2017;50:842-56.
8. Metrano AJ, Miller SJ. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc Chem Res 2019;52:199-215.
9. Zhang YC, Jiang F, Shi F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc Chem Res 2020;53:425-46.
10. Ramachary DB, Jain S. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Org Biomol Chem 2011;9:1277-300.
13. Dondoni A, Massi A. Asymmetric organocatalysis: from infancy to adolescence. Angew Chem Int Ed Engl 2008;47:4638-60.
14. Zhang HH, Shi F. Organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality: strategies and applications. Acc Chem Res 2022;55:2562-80.
15. Volla CM, Atodiresei I, Rueping M. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem Rev 2014;114:2390-431.
16. Nielsen TE, Schreiber SL. Towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed Engl 2008;47:48-56.
17. Li JW, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009;325:161-5.
18. Kumar K, Waldmann H. Synthesis of natural product inspired compound collections. Angew Chem Int Ed Engl 2009;48:3224-42.
19. Koch MA, Schuffenhauer A, Scheck M, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 2005;102:17272-7.
21. Piacente S, Montoro P, Oleszek W, Pizza C. Yucca schidigera bark: phenolic constituents and antioxidant activity. J Nat Prod 2004;67:882-5.
22. Wada S, Hitomi T, Tanaka R. Phenolic compounds Isolated from the bark of Abies sachalinensis. HCA 2009;92:1610-20.
23. Wada S, Hitomi T, Tokuda H, Tanaka R. Anti-tumor-initiating effects of spiro-biflavonoids from Abies sachalinensis. Chem Biodivers 2010;7:2303-8.
24. Vedejs E, Daugulis O, Diver ST. Enantioselective acylations catalyzed by chiral phosphines. J Org Chem 1996;61:430-1.
25. Zhu G, Chen Z, Jiang Q, Xiao D, Cao P, Zhang X. Asymmetric [3 + 2] cycloaddition of 2,3-butadienoates with electron-deficient olefins catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7- phosphabicyclo[2.2.1]heptanes. J Am Chem Soc 1997;119:3836-7.
26. Chen Z, Zhu G, Jiang Q, Xiao D, Cao P, Zhang X. Asymmetric formation of quaternary carbon centers catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]heptanes. J Org Chem 1998;63:5631-5.
27. Vedejs E, Daugulis O. 2-aryl-4,4,8-trimethyl-2-phosphabicyclo[3.3.0]octanes: reactive chiral phosphine catalysts for enantioselective acylation. J Am Chem Soc 1999;121:5813-4.
28. Shaw SA, Aleman P, Vedejs E. Development of chiral nucleophilic pyridine catalysts: applications in asymmetric quaternary carbon synthesis. J Am Chem Soc 2003;125:13368-9.
29. Shi M, Chen LH, Li CQ. Chiral phosphine lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of N-sulfonated imines with activated olefins. J Am Chem Soc 2005;127:3790-800.
30. Wurz RP, Fu GC. Catalytic asymmetric synthesis of piperidine derivatives through the [4 + 2] annulation of imines with allenes. J Am Chem Soc 2005;127:12234-5.
32. Albertshofer K, Tan B, Barbas CF 3rd. Asymmetric construction of spirocyclopentenebenzofuranone core structures
33. Wang D, Wang GP, Sun YL, et al. Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chem Sci 2015;6:7319-25.
34. Ren L, Lei T, Ye J, Gong L. Corrigendum: step-economical synthesis of tetrahydroquinolines by asymmetric relay catalytic friedlander condensation/transfer hydrogenation. Angew Chem Int Ed 2014;53:6027-6027.
35. Sahani RL, Liu RS. Gold-catalyzed [4 + 2] annulation/cyclization cascades of benzisoxazoles with propiolate derivatives to access highly oxygenated tetrahydroquinolines. Angew Chem Int Ed Engl 2017;56:12736-40.
36. Xie M, Chen X, Zhu Y, et al. Asymmetric three-component inverse electron-demand aza-diels-alder reaction: efficient synthesis of ring-fused tetrahydroquinolines. Angew Chem Int Ed Engl 2010;49:3799-802.
37. Zhang JL, Ma R, Zhao HH, Xu PF. Enantioselective construction of spiro-tetrahydroquinoline scaffolds through asymmetric catalytic cascade reactions. Chem Commun (Camb) 2022;58:3493-6.
38. Masters KS, Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem Rev 2012;112:3717-76.
39. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 2011;28:1208-28.
40. Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT. Phomalevones A-C: dimeric and pseudodimeric polyketides from a fungicolous Hawaiian isolate of Phoma sp. (Cucurbitariaceae). J Nat Prod 2011;74:395-401.
41. Goel R, Sharma V, Budhiraja A, Ishar MP. Synthesis and evaluation of novel 3a,9a-dihydro-1-ethoxycarbonyl-1-cyclopenteno[5,4-b]benzopyran-4-ones as antifungal agents. Bioorg Med Chem Lett 2012;22:4665-7.
42. Zhang F, Li L, Niu S, et al. A thiopyranchromenone and other chromone derivatives from an Endolichenic fungus, Preussia africana. J Nat Prod 2012;75:230-7.
43. Zhang M, Gong Y, Zhou W, Zhou Y, Liu X. Recent advances of chromone-based reactants in the catalytic asymmetric domino annulation reaction. Org Chem Front 2021;8:3968-89.
44. Liu X, Zuo X, Wang J, Chang S, Wei Q, Zhou Y. A bifunctional pyrazolone–chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Org Chem Front 2019;6:1485-90.
45. Liu XL, Zhou G, Gong Y, et al. Stereocontrolled synthesis of bispirooxindole-based hexahydroxanthones with five contiguous stereocenters. Org Lett 2019;21:2528-31.
46. Guo DG, Wang HJ, Zhou Y, Liu XL. Advances in chromone-based reactants in the ring opening and skeletal reconstruction reaction: access to skeletally diverse salicyloylbenzene/heterocycle derivatives. Org Biomol Chem 2022;20:4681-98.
47. Chang SQ, Zou X, Gong Y, He XW, Liu XL, Zhou Y. Stereocontrolled construction of six vicinal stereogenic centers on a hexahydroxanthone framework through a formal [2+1+3] annulation. Chem Commun (Camb) 2019;55:14003-6.
48. Li X, Lin MH, Han Y, et al. Asymmetric Diels-Alder reaction of 3-olefinic benzofuran-2-ones and polyenals: construction of chiral spirocyclic benzofuran-2-ones. Org Lett 2014;16:114-7.
49. Zhou Q, Xiao Y, Yuan X, Chen Y. Asymmetric diels-alder reactions of 2,4,6-trienals
50. Cassani C, Tian X, Escudero-Adán EC, Melchiorre P. Multiple approaches to enantiopure spirocyclic benzofuranones using organocatalytic cascade reactions. Chem Commun (Camb) 2011;47:233-5.
51. Chatterjee I, Bastida D, Melchiorre P. Vinylogous organocatalytic triple cascade reaction: forging six stereocenters in complex spiro-oxindolic cyclohexanes. Adv Synth Catal 2013;355:3124-30.
52. Chintalapudi V, Galvin EA, Greenaway RL, Anderson EA. Combining cycloisomerization with trienamine catalysis: a regiochemically flexible enantio- and diastereoselective synthesis of hexahydroindoles. Chem Commun (Camb) 2016;52:693-6.
53. Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Enantioselective Michael/cyclization reaction sequence: scaffold-inspired synthesis of spirooxindoles with multiple stereocenters. Angew Chem Int Ed Engl 2011;50:9124-7.
54. Zhang L, Quan W, Liu R, Tian Y, Pan B, Liu X. Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactone-pyrrolidin-indanedione] hybrids
55. Wang ZH, Wu ZJ, Yue DF, et al. Organocatalytic asymmetric [3+2] cycloaddition of
56. Zhou F, Zhu L, Pan BW, Shi Y, Liu YL, Zhou J. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem Sci 2020;11:9341-65.
57. Steven A, Overman LE. Total synthesis of complex cyclotryptamine alkaloids: stereocontrolled construction of quaternary carbon stereocenters. Angew Chem Int Ed Engl 2007;46:5488-508.
58. Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew Chem Int Ed Engl 2016;55:4156-86.
59. Long R, Huang J, Gong J, Yang Z. Direct construction of vicinal all-carbon quaternary stereocenters in natural product synthesis. Nat Prod Rep 2015;32:1584-601.
60. Companyó X, Zea A, Alba AN, Mazzanti A, Moyano A, Rios R. Organocatalytic synthesis of spiro compounds
61. Li X, Yang C, Jin JL, Xue XS, Cheng JP. Synthesis of optically enriched spirocyclic benzofuran-2-ones by bifunctional thiourea-base catalyzed double-Michael addition of benzofuran-2-ones to dienones. Chem Asian J 2013;8:997-1003.
62. Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol 2002;40:803-16.
63. Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol 1994;14:317-31.
64. Zhang M, Wang J, Chang S, Liu X, Zuo X, Zhou Y. Highly efficient enantioselective synthesis of bispiro[benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition. Chinese Chem Lett 2020;31:381-5.
65. Itazaki H, Nagashima K, Kawamura Y, Matsumoto K, Nakai H, Terui Y. Cinatrins, a novel family of phospholipase A2 inhibitors. I. Taxonomy and fermentation of the producing culture; isolation and structures of cinatrins. J Antibiot (Tokyo) 1992;45:38-49.
66. Tanaka K, Itazaki H, Yoshida T. Cinatrins, a novel family of phospholipase A2 inhibitors. II. Biological activities. J Antibiot (Tokyo) 1992;45:50-5.
67. Keyzers RA, Daoust J, Davies-Coleman MT, et al. Autophagy-modulating aminosteroids isolated from the sponge Cliona celata. Org Lett 2008;10:2959-62.
68. Machida K, Kikuchi M. Studies on the constituents of viburnum species. VIII. GAMMA.-lactone glycosides from the leaves of viburnum wrightii MIQ. Chem Pharm Bull 1994;42:1388-92.
69. Li XL, Cheng X, Yang LM, et al. Dichotomains A and B: two new highly oxygenated phenolic derivatives from Dicranopteris dichotoma. Org Lett 2006;8:1937-40.
70. Perold GW, Pachler KGR. The structure and chemistry of leucodrin. J Chem Soc , C 1966; doi: 10.1039/j39660001918.
71. Wang ZD, Wang F, Li X, Cheng JP.
72. Jiang X, Cao Y, Wang Y, Liu L, Shen F, Wang R. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J Am Chem Soc 2010;132:15328-33.
73. Chen WB, Wu ZJ, Hu J, Cun LF, Zhang XM, Yuan WC. Organocatalytic direct asymmetric aldol reactions of 3-isothiocyanato oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters. Org Lett 2011;13:2472-5.
74. Lin Y, Liu L, Du D. Squaramide-catalyzed asymmetric Michael/cyclization cascade reaction of 3-isothiocyanato oxindoles with chalcones for synthesis of pyrrolidinyl spirooxindoles. Org Chem Front 2017;4:1229-38.
75. Zhao H, Tian T, Pang H, et al. Organocatalytic [3+2] cycloadditions of barbiturate-based olefins with 3-isothiocyanato oxindoles: highly diastereoselective and enantioselective synthesis of dispirobarbiturates. Adv Synth Catal 2016;358:2619-30.
76. Du D, Xu Q, Li XG, Shi M. Construction of spirocyclic oxindoles through regio- and stereoselective [3+2] or [3+2]/[4+2] cascade reaction of
77. Wang L, Yang D, Li D, et al. Catalytic Asymmetric [3 + 2] cyclization reactions of 3-isothiocyanato oxindoles and alkynyl ketones
78. Kayal S, Mukherjee S. Catalytic Aldol-Cyclization Cascade of 3-Isothiocyanato Oxindoles with
79. Wang L, Yang D, Li D, Wang R. Catalytic enantioselective ring-opening and ring-closing reactions of 3-isothiocyanato oxindoles and N-(2-Picolinoyl)aziridines. Org Lett 2015;17:3004-7.
80. Jiang X, Wang Y, Zhang G, et al. Enantioselective synthesis of cyclic thioureas
81. Liu RM, Zhang M, Han XX, et al. Catalytic asymmetric Michael/cyclization reaction of 3-isothiocyanato thiobutyrolactone: an approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons. Org Biomol Chem 2022;20:5060-5.
82. Kumar V, Kaur K, Gupta GK, Sharma AK. Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 2013;69:735-53.
83. Chauhan P, Mahajan S, Enders D. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives. Chem Commun (Camb) 2015;51:12890-907.
84. Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984;27:539-44.
85. Wilde F, Specker E, Neuenschwander M, Nazaré M, Bodtke A, Link A. Tractable synthesis of multipurpose screening compounds with under-represented molecular features for an open access screening platform. Mol Divers 2014;18:483-95.
86. Kakiuchi Y, Sasaki N, Satoh-Masuoka M, Murofushi H, Murakami-Murofushi K. A novel pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochem Biophys Res Commun 2004;320:1351-8.
87. Liu S, Bao X, Wang B. Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chem Commun (Camb) 2018;54:11515-29.
88. Wang L, Shi XM, Dong WP, Zhu LP, Wang R. Efficient construction of highly functionalized spiro[γ-butyrolactone-pyrrolidin-3,3’-oxindole] tricyclic skeletons
89. Chen N, Zhu L, Gan L, et al. Asymmetric synthesis of bispiro[γ-butyrolactone-pyrrolidin-4,4’-pyrazolone] scaffolds containing two quaternary spirocenters
90. Kowalczyk-Dworak D, Albrecht Ł.
91. Guo D, Li Z, Han X, Zhang L, Zhang M, Liu X. Decarboxylative, diastereoselective and exo-selective 1,3-dipolar cycloaddition for diversity-oriented construction of structural spiro[butyrolactone–pyrrolidine–chromanone] hybrids. Synlett 2021;32:1447-52.
92. Guo Y, Meng C, Liu X, et al. Successive waste as reagent: two more steps forward in a pinnick oxidation. Org Lett 2018;20:913-6.
93. Mostinski Y, Lankri D, Tsvelikhovsky D. Transition-metal-catalyzed synthesis of spirolactones. Synthesis 2017;49:2361-73.
94. Hazra A, Paira P, Sahu KB, et al. Chemistry of andrographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-oxindole adducts
95. Cui BD, Zuo J, Zhao JQ, et al. Tandem Michael addition-ring transformation reactions of 3-hydroxyoxindoles/3-aminooxindoles with olefinic azlactones: direct access to structurally diverse spirocyclic oxindoles. J Org Chem 2014;79:5305-14.
96. Chen L, Wu ZJ, Zhang ML, et al. Organocatalytic asymmetric michael/cyclization cascade reactions of 3-hydroxyoxindoles/3-aminooxindoles with
97. Ma SS, Mei WL, Guo ZK, et al. Two new types of bisindole alkaloid from Trigonostemon lutescens. Org Lett 2013;15:1492-5.
98. Yu B, Yu DQ, Liu HM. Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 2015;97:673-98.
99. Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev 2008;37:320-30.
100. O’hagan D. Fluorine in health care: Organofluorine containing blockbuster drugs. J Fluorine Chem 2010;131:1071-81.
101. Wang J, Sánchez-Roselló M, Aceña JL, et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev 2014;114:2432-506.
102. Yang ZT, Zhao J, Yang WL, Deng WP. Enantioselective construction of CF3-containing spirooxindole γ-lactones
103. Ming S, Zhao BL, Du DM. Chiral squaramide-catalysed enantioselective Michael/cyclization cascade reaction of 3-hydroxyoxindoles with
104. Zhu SJ, Hao ZF, Pan Y, et al. Asymmetric formal (3 + 2) cyclocondensation of coumarin-3-formylpyrazoles as 3-carbon partners with 3-hydroxyoxindoles
105. Lee KY, Park DY, Kim JN. Synthesis of
106. Kitson RR, Millemaggi A, Taylor RJ. The renaissance of alpha-methylene-gamma-butyrolactones: new synthetic approaches. Angew Chem Int Ed Engl 2009;48:9426-51.
107. Elford T, Hall D. Advances in 2-(alkoxycarbonyl)allylboration of carbonyl compounds and other direct methods for the preparation of
108. Baeuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 1988;53:211-7.
109. Ruben SM, Dillon PJ, Schreck R, et al. Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-kappa B. Science 1991;254:11.
110. Schmitz ML, Baeuerle PA. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J 1991;10:3805-17.
111. Konaklieva MI, Plotkin BJ. Lactones: generic inhibitors of enzymes? Mini Rev Med Chem 2005;5:73-95.
112. Wang QL, Peng L, Wang FY, et al. An organocatalytic asymmetric sequential allylic alkylation-cyclization of Morita-Baylis-Hillman carbonates and 3-hydroxyoxindoles. Chem Commun (Camb) 2013;49:9422-4.
113. Jayakumar S, Muthusamy S, Prakash M, Kesavan V. Enantioselective synthesis of spirooxindole
114. White NA, Rovis T. Enantioselective
115. Zhang Y, Du Y, Huang Z, et al.
116. White NA, Rovis T. Oxidatively initiated NHC-catalyzed enantioselective synthesis of 3,4-disubstituted cyclopentanones from enals. J Am Chem Soc 2015;137:10112-5.
117. Chen XY, Chen KQ, Sun DQ, Ye S.
118. Song ZY, Chen KQ, Chen XY, Ye S. Diastereo- and enantioselective synthesis of spirooxindoles with contiguous tetrasubstituted stereocenters
119. Mahatthananchai J, Bode JW. On the mechanism of
120. Sarkar S, Biswas A, Samanta RC, Studer A. Catalysis with
121. Mukherjee S, Joseph S, Bhunia A, Gonnade RG, Yetra SR, Biju AT. Enantioselective synthesis of spiro γ-butyrolactones by
122. Ueda T, Inada M, Okamoto I, Morita N, Tamura O. Synthesis of maremycins A and D1
123. Bergonzini G, Melchiorre P. Dioxindole in asymmetric catalytic synthesis: routes to enantioenriched 3-substituted 3-hydroxyoxindoles and the preparation of maremycin A. Angew Chem Int Ed Engl 2012;51:971-4.
124. Zhu SY, Zhang H, Ma QW, Liu D, Hui XP. Oxidative NHC catalysis: direct activation of
125. Dugal-tessier J, O'bryan EA, Schroeder TBH, Cohen DT, Scheidt KA. An
126. Curti C, Rassu G, Zambrano V, et al. Bifunctional cinchona alkaloid/thiourea catalyzes direct and enantioselective vinylogous Michael addition of 3-alkylidene oxindoles to nitroolefins. Angew Chem Int Ed Engl 2012;51:6200-4.
127. Rassu G, Zambrano V, Pinna L, et al. Direct regio-, diastereo-, and enantioselective vinylogous michael addition of prochiral 3-alkylideneoxindoles to nitroolefins. Adv Synth Catal 2013;355:1881-6.
128. Han JL, Chang CH. An asymmetric assembly of spirooxindole dihydropyranones through a direct enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins. Chem Commun (Camb) 2016;52:2322-5.
129. Harris JM, O'Doherty GA. Enantioselective syntheses of isoaltholactone, 3-epi-altholactone, and 5-hydroxygoniothalamin. Org Lett 2000;2:2983-6.
130. Yoshimura F, Torizuka M, Mori G, Tanino K. Intramolecular conjugate addition of
131. Wang ZH, Zhang XY, Lei CW, Zhao JQ, You Y, Yuan WC. Highly enantioselective sequential vinylogous aldol reaction/transesterification of methyl-substituted olefinic butyrolactones with isatins for the construction of chiral spirocyclic oxindole-dihydropyranones. Chem Commun (Camb) 2019;55:9327-30.
132. Gao TP, Lin JB, Hu XQ, Xu PF. A catalytic asymmetric hetero-Diels-Alder reaction of olefinic azlactones and isatins: facile access to chiral spirooxindole dihydropyranones. Chem Commun (Camb) 2014;50:8934-6.
133. Que Y, Li T, Yu C, Wang XS, Yao C. Enantioselective assembly of spirocyclic oxindole-dihydropyranones through NHC-catalyzed cascade reaction of isatins with N-hydroxybenzotriazole esters of
134. Chen X, Yang S, Song BA, Chi YR. Corrigendum: functionalization of benzylic C(sp3)-H bonds of heteroaryl aldehydes through
135. Li TZ, Jiang Y, Guan YQ, Sha F, Wu XY. Direct enantioselective vinylogous aldol-cyclization cascade reaction of allyl pyrazoleamides with isatins: asymmetric construction of spirocyclic oxindole-dihydropyranones. Chem Commun (Camb) 2014;50:10790-2.
136. Zhang YR, He L, Wu X, Shao PL, Ye S. Chiral
137. Sun LH, Shen LT, Ye S. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins. Chem Commun (Camb) 2011;47:10136-8.
138. Shen L, Shao P, Ye S.
139. Yan J, Shi K, Zhao C, et al. NHC-catalyzed [4+2] cycloaddition reactions for the synthesis of 3’-spirocyclic oxindoles