REFERENCES

1. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995;378:703-6.

2. Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA. Flexible metal-organic frameworks. Chem Soc Rev 2014;43:6062-96.

3. Zhou HC, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev 2014;43:5415-8.

4. Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT. Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc Chem Res 2017;50:805-13.

5. Zhao W, Peng J, Wang W, Liu S, Zhao Q, Huang W. Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coord Chem Rev 2018;377:44-63.

6. Chen L, Xu Q. Metal-organic framework composites for catalysis. Matter 2019;1:57-89.

7. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H. Metal-organic frameworks: structures and functional applications. Materials Today 2019;27:43-68.

8. Liu D, Wan J, Pang G, Tang Z. Hollow metal-organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials. Adv Mater 2019;31:e1803291.

9. Xiao JD, Jiang HL. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res 2019;52:356-66.

10. Li H, Eddaoudi M, O’keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402:276-9.

11. Schubert U. Cluster-based inorganic-organic hybrid materials. Chem Soc Rev 2011;40:575-82.

12. Chen Z, Jiang H, Li M, O’Keeffe M, Eddaoudi M. Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal-organic frameworks. Chem Rev 2020;120:8039-65.

13. Kitagawa S, Kondo M. Functional micropore chemistry of crystalline metal complex-assembled compounds. BCSJ 1998;71:1739-53.

14. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed Engl 2004;43:2334-75.

15. An J, Geib SJ, Rosi NL. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J Am Chem Soc 2009;131:8376-7.

16. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012;112:933-69.

17. Tian D, Xu J, Xie ZJ, et al. The first example of hetero-triple-walled metal-organic frameworks with high chemical stability constructed via flexible integration of mixed molecular building blocks. Adv Sci 2016;3:1500283.

18. Liu W, Huang J, Yang Q, et al. Multi-shelled hollow metal-organic frameworks. Angew Chem Int Ed Engl 2017;56:5512-6.

19. Liu Y, Liu G, Zhang C, et al. Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations. Adv Sci 2018;5:1800982.

20. Peng Y, Huang H, Zhang Y, et al. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun 2018;9:187.

21. Zhang L, Liu W, Shi W, et al. Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy. Chemistry 2018;24:13792-9.

22. Xue D, Wang Q, Bai J. Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties. Coord Chem Rev 2019;378:2-16.

23. Xie J, Yang X, Xie Y. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution. Nanoscale 2020;12:4283-94.

24. Velásquez-hernández MDJ, Linares-moreau M, Astria E, et al. Towards applications of bioentities@MOFs in biomedicine. Coord Chem Rev 2021;429:213651.

25. Tang Y, Zheng S, Cao S, et al. Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. J Colloid Interface Sci 2022;626:1062-9.

26. Wang F, Hu J, Liu Y, et al. Turning coordination environment of 2D nickel-based metal-organic frameworks by π-conjugated molecule for enhancing glucose electrochemical sensor performance. Mater Today Chem 2022;24:100885.

27. Dybtsev DN, Chun H, Kim K. Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew Chem 2004;116:5143-6.

28. Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 2012;112:970-1000.

29. Larsson EM, Langhammer C, Zorić I, Kasemo B. Nanoplasmonic probes of catalytic reactions. Science 2009;326:1091-4.

30. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng HM. Titanium dioxide crystals with tailored facets. Chem Rev 2014;114:9559-612.

31. Chen D, Zhang N, Tian J, Liu C, Du M. Pore modulation of metal-organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. J Mater Chem A 2017;5:4861-7.

32. Li X, Xue H, Pang H. Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst. Nanoscale 2017;9:216-22.

33. Shi D, Zheng R, Sun MJ, et al. Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew Chem Int Ed Engl 2017;56:14637-41.

34. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 2021;121:12278-326.

35. Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 2014;43:5700-34.

36. Farha OK, Hupp JT. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc Chem Res 2010;43:1166-75.

37. Li B, Gu P, Feng Y, et al. Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 2017;27:1605784.

38. Abednatanzi S, Gohari Derakhshandeh P, Depauw H, et al. Mixed-metal metal-organic frameworks. Chem Soc Rev 2019;48:2535-65.

39. Guo F, Yang S, Liu Y, Wang P, Huang J, Sun W. Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction. ACS Catal 2019;9:8464-70.

40. Li Y, Xu Y, Liu Y, Pang H. Exposing {001} crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 2019;15:e1902463.

41. Lerma-Berlanga B, R Ganivet C, Almora-Barrios N, et al. Effect of linker distribution in the photocatalytic activity of multivariate mesoporous crystals. J Am Chem Soc 2021;143:1798-806.

42. Li W, Guo X, Geng P, et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv Mater 2021;33:e2105163.

43. Wei Y, Zhu B, Wang J, et al. A series of novel Co(ii)-based MOFs: syntheses, structural diversity, and various properties. CrystEngComm 2021;23:6376-87.

44. Parsaei M, Akhbari K, White J. Modulating carbon dioxide storage by facile synthesis of nanoporous pillared-layered metal-organic framework with different synthetic routes. Inorg Chem 2022;61:3893-902.

45. Zhang X, Han X, Zhu F, et al. Route to the structure-controlled synthesis of Fe nanobelts and their oxygen evolution reaction application. Inorg Chem 2022;61:3024-8.

46. Zorainy MY, Sheashea M, Kaliaguine S, Gobara M, Boffito DC. Facile solvothermal synthesis of a MIL-47(V) metal-organic framework for a high-performance Epoxy/MOF coating with improved anticorrosion properties. RSC Adv 2022;12:9008-22.

47. Ai L, Li L, Zhang C, Fu J, Jiang J. MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry 2013;19:15105-8.

48. Dao X, Ni Y. Al-based coordination polymer nanotubes: simple preparation, post-modification and application in Fe3+ ions sensing. Dalton Trans 2017;46:5373-83.

49. He T, Ni B, Zhang S, et al. Ultrathin 2D zirconium metal-organic framework nanosheets: preparation and application in photocatalysis. Small 2018;14:e1703929.

50. Zhao M, Wang Y, Ma Q, et al. Ultrathin 2D metal-organic framework nanosheets. Adv Mater 2015;27:7372-8.

51. Pathak A, Shen JW, Usman M, et al. Integration of a (-Cu-S-)n plane in a metal-organic framework affords high electrical conductivity. Nat Commun 2019;10:1721.

52. Marsh C, Han X, Li J, et al. Exceptional packing density of ammonia in a dual-functionalized metal-organic framework. J Am Chem Soc 2021;143:6586-92.

53. Li XX, Liu J, Zhang L, et al. Hydrophobic polyoxometalate-based metal-organic framework for efficient CO2 photoconversion. ACS Appl Mater Interfaces 2019;11:25790-5.

54. Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 2016:1.

55. Pichon A, Lazuen-garay A, James SL. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006;8:211.

56. Katsenis AD, Puškarić A, Štrukil V, et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat Commun 2015;6:6662.

57. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001;291:1947-9.

58. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008;319:1229-32.

59. Liu Q, Zhou Y, Kou J, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 2010;132:14385-7.

60. He J, Liu H, Xu B, Wang X. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts. Small 2015;11:1144-9.

61. Liang HW, Liu JW, Qian HS, Yu SH. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications. Acc Chem Res 2013;46:1450-61.

62. Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chem Soc Rev 2013;42:2610-53.

63. Petkovich ND, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 2013;42:3721-39.

64. Yu L, Wu HB, Lou XW. Self-templated formation of hollow structures for electrochemical energy applications. Acc Chem Res 2017;50:293-301.

65. Pachfule P, Balan BK, Kurungot S, Banerjee R. One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Chem Commun 2012;48:2009-11.

66. Zhang W, Wu ZY, Jiang HL, Yu SH. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J Am Chem Soc 2014;136:14385-8.

67. Zhang G, Hou S, Zhang H, et al. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 2015;27:2400-5.

68. Yao MS, Tang WX, Wang GE, Nath B, Xu G. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater 2016;28:5229-34.

69. Zhang W, Cai G, Wu R, et al. Templating synthesis of metal-organic framework nanofiber aerogels and their derived hollow porous carbon nanofibers for energy storage and conversion. Small 2021;17:e2004140.

70. Jahan M, Bao Q, Yang JX, Loh KP. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J Am Chem Soc 2010;132:14487-95.

71. Caddeo F, Vogt R, Weil D, Sigle W, Toimil-Molares ME, Maijenburg AW. Tuning the size and shape of NanoMOFs via templated electrodeposition and subsequent electrochemical oxidation. ACS Appl Mater Interfaces 2019;11:25378-87.

72. Arbulu RC, Jiang YB, Peterson EJ, Qin Y. Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew Chem Int Ed Engl 2018;57:5813-7.

73. Li SC, Hu BC, Shang LM, et al. General synthesis and solution processing of metal-organic framework nanofibers. Adv Mater 2022;34:e2202504.

74. Steunou N, Livage J. Rational design of one-dimensional vanadium(v) oxide nanocrystals: an insight into the physico-chemical parameters controlling the crystal structure, morphology and size of particles. CrystEngComm 2015;17:6780-95.

75. Pan L, Gao P, Tervoort E, Tartakovsky AM, Niederberger M. Surface energy-driven ex situ hierarchical assembly of low-dimensional nanomaterials on graphene aerogels: a versatile strategy. J Mater Chem A 2018;6:18551-60.

76. Muschi M, Lalitha A, Sene S, et al. Formation of a single-crystal aluminum-based MOF nanowire with graphene oxide nanoscrolls as structure-directing agents. Angew Chem Int Ed Engl 2020;59:10353-8.

77. Sharifi T, Gracia-Espino E, Barzegar HR, et al. Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nat Commun 2013;4:2319.

78. Qiao S, Wang Q, Zhang Q, Huang C, He G, Zhang F. Sacrificial template method to synthesize atomically dispersed Mn atoms on S, N-codoped carbon as a separator modifier for advanced Li-S batteries. ACS Appl Mater Interfaces 2022;14:42123-33.

79. Sun JK, Zhan WW, Akita T, Xu Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. J Am Chem Soc 2015;137:7063-6.

80. Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016;539:76-80.

81. Zhang W, Liu Y, Lu G, et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv Mater 2015;27:2923-9.

82. Yang Q, Liu W, Wang B, et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat Commun 2017;8:14429.

83. Reboul J, Furukawa S, Horike N, et al. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat Mater 2012;11:717-23.

84. Zhan WW, Kuang Q, Zhou JZ, Kong XJ, Xie ZX, Zheng LS. Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc 2013;135:1926-33.

85. Majano G, Pérez-Ramírez J. Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2). Adv Mater 2013;25:1052-7.

86. Li B, Ma JG, Cheng P. Silica-protection-assisted encapsulation of Cu2O nanocubes into a metal-organic framework (ZIF-8) to provide a composite catalyst. Angew Chem Int Ed Engl 2018;57:6834-7.

87. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl 2011;50:2904-39.

88. Jiang Z, Zhao J, Li C, Liao Q, Xiao R, Yang W. Strong synergistic effect of Co3O4 encapsulated in nitrogen-doped carbon nanotubes on the nonradical-dominated persulfate activation. Carbon 2020;158:172-83.

89. Jang W, Kim BG, Seo S, et al. Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today 2021;37:101081.

90. Wu L, Wu T, Liu Z, et al. Carbon nanotube-based materials for persulfate activation to degrade organic contaminants: properties, mechanisms and modification insights. J Hazard Mater 2022;431:128536.

91. Reddy MV, Subba Rao GV, Chowdari BV. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 2013;113:5364-457.

92. Yu X, Yu L, Lou XWD. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 2016;6:1501333.

93. Schulze HA, Hoppe B, Schäfer M, Warwas DP, Behrens P. Electrically conducting nanocomposites of carbon nanotubes and metal-organic frameworks with strong interactions between the two components. ChemNanoMat 2019;5:1159-69.

94. Hu X, Huang T, Wang S, et al. Separator modified by Co-porphyrin based Zr-MOF@CNT composite enabling efficient polysulfides catalytic conversion for advanced lithium-sulfur batteries. Electrochimica Acta 2021;398:139317.

95. Chronopoulos DD, Saini H, Tantis I, Zbořil R, Jayaramulu K, Otyepka M. Carbon nanotube based metal-organic framework hybrids from fundamentals toward applications. Small 2022;18:e2104628.

96. Chen YM, Yu L, Lou XW. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed Engl 2016;55:5990-3.

97. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004;304:711-4.

98. Liu T, Liu Y, Xu J, Yao L, Liu D, Wang C. Conversion of Cu2O nanowires into Cu2O/HKUST-1 core/sheath nanostructures and hierarchical HKUST-1 nanotubes. RSC Adv 2016;6:91440-4.

99. Li X, Yan Y, Zhang B, Bai T, Wang Z, He T. PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges. J Mater Sci 2021;56:10745-81.

100. Li X, Zhou R, Wang Z, Zhang M, He T. Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges. J Mater Chem A 2022;10:1642-81.

101. Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc 2007;129:2777-82.

102. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Kundu S. Transition-metal-based zeolite imidazolate framework nanofibers via an electrospinning approach: a review. ACS Omega 2020;5:57-67.

103. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Madhu R, Kundu S. Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers via electrospinning processes towards electrocatalytic water splitting: a review. J Mater Chem A 2021;9:11961-2002.

104. Dou Y, Zhang W, Kaiser A. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv Sci 2020;7:1902590.

105. Lu AX, McEntee M, Browe MA, Hall MG, DeCoste JB, Peterson GW. MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl Mater Interfaces 2017;9:13632-6.

106. Mccarthy DL, Liu J, Dwyer DB, et al. Electrospun metal-organic framework polymer composites for the catalytic degradation of methyl paraoxon. New J Chem 2017;41:8748-53.

107. Bai Z, Liu S, Chen P, Cheng G, Wu G, Liu Y. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers. Nanotechnology 2020;31:125702.

108. Liang H, Yao A, Jiao X, Li C, Chen D. Fast and sustained degradation of chemical warfare agent simulants using flexible self-supported metal-organic framework filters. ACS Appl Mater Interfaces 2018;10:20396-403.

109. Ji D, Fan L, Tao L, et al. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew Chem Int Ed Engl 2019;58:13840-4.

110. Niu Q, Guo J, Chen B, Nie J, Guo X, Ma G. Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon 2017;114:250-60.

111. Efome JE, Rana D, Matsuura T, Lan CQ. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl Mater Interfaces 2018;10:18619-29.

112. Topuz F, Abdulhamid MA, Hardian R, Holtzl T, Szekely G. Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal-organic frameworks for capturing volatile organic compounds. J Hazard Mater 2022;424:127347.

113. Chen LF, Lu Y, Yu L, Lou XW. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 2017;10:1777-83.

114. Huang H, Wang J, Yang X, et al. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew Chem Int Ed Engl 2020;59:14504-10.

115. Dou Y, Grande C, Kaiser A, Zhang W. Highly structured metal-organic framework nanofibers for methane storage. Sci China Mater 2021;64:1742-50.

116. Zheng J, Wu Y, Deng K, et al. Chirality-discriminated conductivity of metal-amino acid biocoordination polymer nanowires. ACS Nano 2016;10:8564-70.

117. Shi J, Zhang J, Tan D, et al. Rapid, room-temperature and template-free synthesis of metal-organic framework nanowires in alcohol. ChemCatChem 2019;11:2058-62.

118. Hwang J, Heil T, Antonietti M, Schmidt BVKJ. Morphogenesis of metal-organic mesocrystals mediated by double hydrophilic block copolymers. J Am Chem Soc 2018;140:2947-56.

119. Chi WS, Sundell BJ, Zhang K, Harrigan DJ, Hayden SC, Smith ZP. Mixed-matrix membranes formed from multi-dimensional metal-organic frameworks for enhanced gas transport and plasticization resistance. ChemSusChem 2019;12:2355-60.

120. Rosnes MH, Nesse FS, Opitz M, Dietzel PD. Morphology control in modulated synthesis of metal-organic framework CPO-27. Microporous Mesoporous Mater 2019;275:207-13.

121. Yu B, Ye G, Chen J, Ma S. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environ Pollut 2019;253:39-48.

122. Bonnett BL, Smith ED, De La Garza M, et al. PCN-222 metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes. ACS Appl Mater Interfaces 2020;12:15765-73.

123. Feng L, Wang KY, Lv XL, Yan TH, Zhou HC. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Natl Sci Rev 2020;7:1743-58.

124. Liu X, Kirlikovali KO, Chen Z, et al. Small molecules, big effects: tuning adsorption and catalytic properties of metal-organic frameworks. Chem Mater 2021;33:1444-54.

125. Song Z, Zhang L, Doyle-davis K, Fu X, Luo J, Sun X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv Energy Mater 2020;10:2001561.

126. Wen X, Zhang Q, Guan J. Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev 2020;409:213214.

127. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 2020;120:1438-511.

128. Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew Chem Int Ed Engl 2009;48:4739-43.

129. Pachfule P, Shinde D, Majumder M, Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat Chem 2016;8:718-24.

130. Liu X, Jia Q, Fu Y, Zheng T. Exfoliation of metal-organic framework nanosheets using surface acoustic waves. Ultrason Sonochem 2022;83:105943.

131. Zou L, Kitta M, Hong J, et al. Fabrication of a spherical superstructure of carbon nanorods. Adv Mater 2019;31:e1900440.

132. Mallick A, Garai B, Díaz DD, Banerjee R. Hydrolytic conversion of a metal-organic polyhedron into a metal-organic framework. Angew Chem Int Ed Engl 2013;52:13755-9.

133. Shao D, Shi L, Yin L, et al. Reversible on-off switching of both spin crossover and single-molecule magnet behaviours via a crystal-to-crystal transformation. Chem Sci 2018;9:7986-91.

134. Qu X, Yan B. Zn(ii)/Cd(ii)-based metal-organic frameworks: crystal structures, Ln(iii)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. J Mater Chem C 2020;8:9427-39.

135. Ciupa-litwa A, Janczak J, Peksa P, Sieradzki A. Elucidation of the mechanism of phase transition in a zinc formate framework templated by a diammonium cation - structural, phonon and dielectric studies. Crystals 2021;11:213.

136. Kim J, Ha J, Lee JH, Moon HR. Solid-state phase transformations toward a metal-organic framework of 7-connected Zn4O secondary building units. Nano Res 2021;14:411-6.

137. Ying P, Zhang J, Zhong Z. Effect of phase transition on the thermal transport in isoreticular DUT materials. J Phys Chem C 2021;125:12991-3001.

138. Zhou CC, Liu HT, Ding L, Lu J, Wang SN, Li YW. Single-crystal-to-single-crystal transformations among three Mn-MOFs containing different water molecules induced by reaction time: crystal structures and proton conductivities. Dalton Trans 2021;50:11077-90.

139. Lv Y, Mao X, Gong W, et al. Hcp-phased Ni nanoparticles with generic catalytic hydrogenation activities toward different functional groups. Sci China Mater 2022;65:1252-61.

140. Choi SB, Furukawa H, Nam HJ, et al. Reversible interpenetration in a metal-organic framework triggered by ligand removal and addition. Angew Chem Int Ed Engl 2012;51:8791-5.

141. Coudert F. Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem Mater 2015;27:1905-16.

142. Li QQ, Ren CY, Huang YY, et al. Thermally triggered solid-state single-crystal-to-single-crystal structural transformation accompanies property changes. Chemistry 2015;21:4703-11.

143. Ghoufi A, Benhamed K, Boukli-Hacene L, Maurin G. Electrically induced breathing of the MIL-53(Cr) metal-organic framework. ACS Cent Sci 2017;3:394-8.

144. Evans JD, Bon V, Senkovska I, Lee HC, Kaskel S. Four-dimensional metal-organic frameworks. Nat Commun 2020;11:2690.

145. Krause S, Hosono N, Kitagawa S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew Chem Int Ed Engl 2020;59:15325-41.

146. Li R, Liu H, Zhou C, et al. Ligand substitution induced single-crystal-to-single-crystal transformations in two Ni(ii) coordination compounds displaying consequential changes in proton conductivity. Inorg Chem Front 2020;7:1880-91.

147. Han Y, Sinnwell MA, Teat SJ, et al. Desulfurization efficiency preserved in a heterometallic MOF: synthesis and thermodynamically controlled phase transition. Adv Sci 2019;6:1802056.

148. Chen Y, Feng X, Huang X, et al. A tale of copper coordination frameworks: controlled single-crystal-to-single-crystal transformations and their catalytic C-H bond activation properties. Chemistry 2015;21:13894-9.

149. Yang Y, Zhu W, Dong Z, et al. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv Mater 2017;29:1703588.

150. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114:10024-35.

151. Taylor KM, Rieter WJ, Lin W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J Am Chem Soc 2008;130:14358-9.

152. Mazaj M, Logar NZ, Žagar E, Kovačič S. A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. J Mater Chem A 2017;5:1967-71.

153. Ding Y, Hu L, He D, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J 2020;380:122489.

154. Niu H, Cao L, Yang X, Liu K, Liu L, Wang J. In situ growth of the ZIF-8 on the polymer monolith via CO2-in-water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity. Polym Adv Technol 2021;32:3194-204.

155. Zou L, Hou CC, Liu Z, Pang H, Xu Q. Superlong single-crystal metal-organic framework nanotubes. J Am Chem Soc 2018;140:15393-401.

156. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

157. Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 2015;3:11700-15.

158. Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem Rev 2018;118:6189-235.

159. Wang J, Wang K, Xu Y. Emerging two-dimensional covalent and coordination polymers for stable lithium metal batteries: from liquid to solid. ACS Nano 2021;15:19026-53.

160. Li C, Wang K, Li J, Zhang Q. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Materials Lett 2020;2:779-97.

161. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev 2018;47:6267-95.

162. Schneemann A, Dong R, Schwotzer F, et al. 2D framework materials for energy applications. Chem Sci 2020;12:1600-19.

163. Zhu H, Liu D. The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J Mater Chem A 2019;7:21004-35.

164. Faghani A, Donskyi IS, Fardin Gholami M, et al. Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew Chem Int Ed Engl 2017;56:2675-9.

165. López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nat Chem 2018;10:1001-7.

166. Tan C, Yu P, Hu Y, et al. High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J Am Chem Soc 2015;137:10430-6.

167. Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015;9:9451-69.

168. Al Obeidli A, Ben Salah H, Al Murisi M, Sabouni R. Recent advancements in MOFs synthesis and their green applications. Int J Hydrog Energy 2022;47:2561-93.

169. Liu Y, Cheng H, Lyu M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 2014;136:15670-5.

170. Fang Z, Bueken B, De Vos DE, Fischer RA. Defect-engineered metal-organic frameworks. Angew Chem Int Ed Engl 2015;54:7234-54.

171. Lin S, Diercks CS, Zhang YB, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015;349:1208-13.

172. Ashworth DJ, Roseveare TM, Schneemann A, et al. Increasing alkyl chain length in a series of layered metal-organic frameworks aids ultrasonic exfoliation to form nanosheets. Inorg Chem 2019;58:10837-45.

173. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008;3:563-8.

174. Shen J, He Y, Wu J, et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett 2015;15:5449-54.

175. Tan C, Yang K, Dong J, et al. Boosting enantioselectivity of chiral organocatalysts with ultrathin two-dimensional metal-organic framework nanosheets. J Am Chem Soc 2019;141:17685-95.

176. Jian M, Qiu R, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci Adv 2020;6:eaay3998.

177. Ding Y, Chen YP, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J Am Chem Soc 2017;139:9136-9.

178. Schoedel A, Li M, Li D, O'Keeffe M, Yaghi OM. Structures of metal-organic frameworks with rod secondary building units. Chem Rev 2016;116:12466-535.

179. Huang J, Li Y, Huang RK, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew Chem Int Ed Engl 2018;57:4632-6.

180. Liu L, Chen J, Zhang Y, et al. Fabrication of ultrathin single-layer 2D metal-organic framework nanosheets with excellent adsorption performance. via ;9:546-55.

181. Gallego A, Hermosa C, Castillo O, et al. Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv Mater 2013;25:2141-6.

182. Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun 2017;8:14460.

183. Au VK, Nakayashiki K, Huang H, Suginome S, Sato H, Aida T. Stepwise expansion of layered metal-organic frameworks for nonstochastic exfoliation into porous nanosheets. J Am Chem Soc 2019;141:53-7.

184. Lê Anh M, Potapov P, Lubk A, Doert T, Ruck M. Freestanding few-layer sheets of a dual topological insulator. npj 2D Mater Appl 2021:5.

185. Lê Anh M, Potapov P, Wolf D, et al. Freestanding nanolayers of a wide-gap topological insulator through liquid-phase exfoliation. Chemistry 2021;27:794-801.

186. Chen JE, Yang Z, Koh HU, et al. Current progress and scalable approach toward the synthesis of 2D metal-organic frameworks. Adv Materials Inter 2022;9:2102560.

187. Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 2008;3:538-42.

188. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010;466:474-7.

189. Yaghi OM. Evolution of MOF single crystals. Chem 2022;8:1541-3.

190. Han J, He X, Liu J, et al. Determining factors in the growth of MOF single crystals unveiled by in situ interface imaging. Chemistry 2022;8:1637-57.

191. Liu YL, Liu XY, Feng L, et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications in electrocatalysis and photocatalysis. ChemSusChem 2022;15:e202102603.

192. Sakamoto R, Hoshiko K, Liu Q, et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun 2015;6:6713.

193. Ying Y, Zhang Z, Peh SB, et al. Pressure-responsive two-dimensional metal-organic framework composite membranes for CO2 separation. Angew Chem Int Ed Engl 2021;60:11318-25.

194. Zhang T, Zheng B, Li L, Song J, Song L, Zhang M. Fewer-layer conductive metal-organic Langmuir-Blodgett films as electrocatalysts enable an ultralow detection limit of H2O2. Appl Surf Sci 2021;539:148255.

195. Lin Y, Li Y, Cao Y, Wang X. Two-dimensional MOFs: design & synthesis and applications. Chem Asian J 2021;16:3281-98.

196. Shi Y, Wang Y, Yu Y, Niu Z, Zhang B. N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst. J Mater Chem A 2017;5:8897-902.

197. Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017;11:2180-6.

198. Huang L, Zhang X, Han Y, Wang Q, Fang Y, Dong S. In situ synthesis of ultrathin metal-organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. J Mater Chem A 2017;5:18610-7.

199. Huang L, Gao G, Zhang H, Chen J, Fang Y, Dong S. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy 2020;68:104296.

200. Talin AA, Centrone A, Ford AC, et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014;343:66-9.

201. Sun L, Campbell MG, Dincă M. Electrically conductive porous metal-organic frameworks. Angew Chem Int Ed Engl 2016;55:3566-79.

202. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem Soc Rev 2017;46:3185-241.

203. Wu G, Huang J, Zang Y, He J, Xu G. Porous field-effect transistors based on a semiconductive metal-organic framework. J Am Chem Soc 2017;139:1360-3.

204. Cui Y, Yan J, Chen Z, et al. [Cu3(C6Se6)]n: the first highly conductive 2D π-d conjugated coordination polymer based on benzenehexaselenolate. Adv Sci 2019;6:1802235.

205. Yang C, Dong R, Wang M, et al. A semiconducting layered metal-organic framework magnet. Nat Commun 2019;10:3260.

206. Arora H, Dong R, Venanzi T, et al. Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv Mater 2020;32:e1907063.

207. Schwotzer F, Horak J, Senkovska I, et al. Cooperative assembly of 2D-MOF nanoplatelets into hierarchical carpets and tubular superstructures for advanced air filtration. Angew Chem Int Ed Engl 2022;61:e202117730.

208. Dong R, Han P, Arora H, et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat Mater 2018;17:1027-32.

209. Li FL, Wang P, Huang X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed Engl 2019;58:7051-6.

210. Liu B, Shekhah O, Arslan HK, Liu J, Wöll C, Fischer RA. Enantiopure metal-organic framework thin films: oriented SURMOF growth and enantioselective adsorption. Angew Chem Int Ed Engl 2012;51:807-10.

211. Haraguchi T, Otsubo K, Sakata O, Fujiwara A, Kitagawa H. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metal-organic framework thin films. Inorg Chem 2015;54:11593-5.

212. Haraguchi T, Otsubo K, Sakata O, Kawaguchi S, Fujiwara A, Kitagawa H. A three-dimensional accordion-like metal-organic framework: synthesis and unconventional oriented growth on a surface. Chem Commun 2016;52:6017-20.

213. Begum S, Hassan Z, Bräse S, Wöll C, Tsotsalas M. Metal-organic framework-templated biomaterials: recent progress in synthesis, functionalization, and applications. Acc Chem Res 2019;52:1598-610.

214. Lugier O, Pokharel U, Castellanos S. Impact of synthetic conditions on the morphology and crystallinity of FDMOF-1(Cu) thin films. Cryst Growth Des 2020;20:5302-9.

215. Sakaida S, Haraguchi T, Otsubo K, Sakata O, Fujiwara A, Kitagawa H. Fabrication and structural characterization of an ultrathin film of a two-dimensional-layered metal-organic framework, {Fe(py)2[Ni(CN)4]} (py = pyridine). Inorg Chem 2017;56:7606-9.

216. Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Membr Sci 2021;624:119101.

217. Liu X, Mazel A, Marschner S, et al. Photoinduced delamination of metal-organic framework thin films by spatioselective generation of reactive oxygen species. ACS Appl Mater Interfaces 2021;13:57768-73.

218. Zhao W, Chen T, Wang W, et al. Layer-by-layer 2D ultrathin conductive Cu3(HHTP)2 film for high-performance flexible transparent supercapacitors. Adv Mater Interfaces 2021;8:2100308.

219. Cao F, Zhao M, Yu Y, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc 2016;138:6924-7.

220. Liu X, Yan Z, Zhang Y, et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019;13:5222-30.

221. Hang L, Zhang T, Wen H, et al. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res 2021;14:660-6.

222. Wang Z, Wang G, Qi H, et al. Ultrathin two-dimensional conjugated metal-organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem Sci 2020;11:7665-71.

223. Liu X, Demir NK, Wu Z, Li K. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 2015;137:6999-7002.

224. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016;45:2327-67.

225. Zhang X, Zhang P, Chen C, et al. Fabrication of 2D metal-organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chem 2019;21:54-8.

226. Cho W, Lee HJ, Oh M. Growth-controlled formation of porous coordination polymer particles. J Am Chem Soc 2008;130:16943-6.

227. Umemura A, Diring S, Furukawa S, Uehara H, Tsuruoka T, Kitagawa S. Morphology design of porous coordination polymer crystals by coordination modulation. J Am Chem Soc 2011;133:15506-13.

228. Hu M, Ju Y, Liang K, Suma T, Cui J, Caruso F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv Funct Mater 2016;26:5827-34.

229. Guo X, Zheng S, Zhang G, et al. Nanostructured graphene-based materials for flexible energy storage. Energy Stor Mater 2017;9:150-69.

230. Bai XJ, Chen D, Li LL, et al. Fabrication of MOF thin films at miscible liquid-liquid interface by spray method. ACS Appl Mater Interfaces 2018;10:25960-6.

231. Cui J, Gao N, Yin X, et al. Microfluidic synthesis of uniform single-crystalline MOF microcubes with a hierarchical porous structure. Nanoscale 2018;10:9192-8.

232. Geng P, Wang L, Du M, et al. MIL-96-Al for Li-S batteries: shape or size? Adv Mater 2022;34:e2107836.

233. Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev 2020;49:301-31.

234. Carné-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat Chem 2013;5:203-11.

235. Xu X, Zhang Z, Wang X. Well-defined metal-organic-framework hollow nanostructures for catalytic reactions involving gases. Adv Mater 2015;27:5365-71.

236. He T, Xu X, Ni B, et al. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals. Nanoscale 2017;9:19209-15.

237. He T, Xu X, Ni B, et al. Metal-organic framework based microcapsules. Angew Chem Int Ed Engl 2018;57:10148-52.

238. Qiu T, Gao S, Liang Z, et al. Pristine hollow metal-organic frameworks: design, synthesis and application. Angew Chem Int Ed Engl 2021;60:17314-36.

239. Han L, Yu XY, Lou XW. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Adv Mater 2016;28:4601-5.

240. Kajiwara T, Fujii M, Tsujimoto M, et al. Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)-CO complex. Angew Chem Int Ed Engl 2016;55:2697-700.

241. Lian X, Fang Y, Joseph E, et al. Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev 2017;46:3386-401.

242. Diercks CS, Liu Y, Cordova KE, Yaghi OM. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat Mater 2018;17:301-7.

243. Drake T, Ji P, Lin W. Site isolation in metal-organic frameworks enables novel transition metal catalysis. Acc Chem Res 2018;51:2129-38.

244. Li Z, Rayder TM, Luo L, Byers JA, Tsung CK. Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation. J Am Chem Soc 2018;140:8082-5.

245. Luo L, Lo WS, Si X, et al. Directional engraving within single crystalline metal-organic framework particles via oxidative linker cleaving. J Am Chem Soc 2019;141:20365-70.

246. Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev 2015;285:11-23.

247. Cai X, Xie Z, Li D, Kassymova M, Zang S, Jiang H. Nano-sized metal-organic frameworks: synthesis and applications. Coord Chem Rev 2020;417:213366.

248. Thi Dang Y, Hoang HT, Dong HC, et al. Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microporous Mesoporous Mater 2020;298:110064.

249. Gabriel C, Gabriel S, Grant EH, Grant EH, Halstead BSJ, Mingos DMP. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 1998;27:213.

250. Lee Y, Kim J, Ahn W. Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 2013;30:1667-80.

251. Yang W, Zheng J, Hu S, et al. Self-assembled three-dimensional macroporous Co2(OH)3 Cl-MnO2 spheres synthesized by microwave-assisted method: a new hybrid for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 2017;5:4563-72.

252. Thomas-hillman I, Laybourn A, Dodds C, Kingman SW. Realising the environmental benefits of metal-organic frameworks: recent advances in microwave synthesis. J Mater Chem A 2018;6:11564-81.

253. Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 2020;11:100076.

254. Ma M, Bétard A, Weber I, Al-hokbany NS, Fischer RA, Metzler-nolte N. Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: high quality microwave synthesis and solvent-induced lattice “breathing”. Cryst Growth Des 2013;13:2286-91.

255. Li Y, Liu Y, Gao W, et al. Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes. CrystEngComm 2014;16:7037-42.

256. Babu R, Roshan R, Kathalikkattil AC, Kim DW, Park DW. Rapid, microwave-assisted synthesis of cubic, three-dimensional, highly porous MOF-205 for room temperature CO2 fixation via cyclic carbonate synthesis. ACS Appl Mater Interfaces 2016;8:33723-31.

257. Chen C, Feng X, Zhu Q, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture. Inorg Chem 2019;58:2717-28.

258. Wang W, Sun Z, Chen S, Qian J, He M, Chen Q. Microwave-assisted fabrication of a mixed-ligand [Cu43-OH)2]-cluster-based metal-organic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide. Appl Organomet Chem 2021:35.

259. Kong Y, Zhang R, Zhang J, et al. Microwave-assisted rapid synthesis of nanoscale MOF-303 for hydrogel composites with superior proton conduction at ambient-humidity conditions. ACS Appl Energy Mater 2021;4:14681-8.

260. Firmino AD, Mendes RF, Antunes MM, et al. Robust multifunctional yttrium-based metal-organic frameworks with breathing effect. Inorg Chem 2017;56:1193-208.

261. Kukkar P, Kim K, Kukkar D, Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord Chem Rev 2021;446:214109.

262. Cherbański R, Rudniak L. Modelling of microwave heating of water in a monomode applicator - influence of operating conditions. Int J Therm Sci 2013;74:214-29.

263. Zhao Z, Li H, Zhao K, Wang L, Gao X. Microwave-assisted synthesis of MOFs: rational design via numerical simulation. Chem Eng J 2022;428:131006.

264. Chang HY, Wu KY, Chen WC, et al. Water-induced self-assembly of amphiphilic discotic molecules for adaptive artificial water channels. ACS Nano 2021;15:14885-90.

265. Mohammadi P, Gandier JA, Nonappa, Wagermaier W, Miserez A, Penttilä M. Bioinspired functionally graded composite assembled using cellulose nanocrystals and genetically engineered proteins with controlled biomineralization. Adv Mater 2021;33:e2102658.

266. Morris RE, Čejka J. Exploiting chemically selective weakness in solids as a route to new porous materials. Nat Chem 2015;7:381-8.

267. Huang H, Li JR, Wang K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nat Commun 2015;6:8847.

268. Feng L, Wang K, Powell J, Zhou H. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019;1:801-24.

269. Wang Z, Ge L, Zhang G, et al. The controllable synthesis of urchin-shaped hierarchical superstructure MOFs with high catalytic activity and stability. Chem Commun 2021;57:8758-61.

270. Zhao X, Feng J, Liu J, et al. Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production. Adv Sci 2018;5:1700590.

271. Hu SJ, Guo XQ, Zhou LP, et al. Guest-driven self-assembly and chiral induction of photofunctional lanthanide tetrahedral cages. J Am Chem Soc 2022;144:4244-53.

272. Alivand MS, Mazaheri O, Wu Y, et al. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nat Commun 2022;13:1249.

273. Avci C, Imaz I, Carné-Sánchez A, et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat Chem 2017;10:78-84.

274. Rosi NL, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks. Science 2003;300:1127-9.

275. Rowsell JL, Yaghi OM. Strategies for hydrogen storage in metal - organic frameworks. Angew Chem Int Ed Engl 2005;44:4670-9.

276. Ren J, Langmi HW, North BC, Mathe M. Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage: review on processing of MOF materials towards system integration. Int J Energy Res 2015;39:607-20.

277. Vilela SMF, Salcedo-Abraira P, Micheron L, Solla EL, Yot PG, Horcajada P. A robust monolithic metal-organic framework with hierarchical porosity. Chem Commun 2018;54:13088-91.

278. Lim GJH, Wu Y, Shah BB, et al. 3D-printing of pure metal-organic framework monoliths. ACS Mater Lett 2019;1:147-53.

279. Sumida K, Liang K, Reboul J, Ibarra IA, Furukawa S, Falcaro P. Sol-gel processing of metal-organic frameworks. Chem Mater 2017;29:2626-45.

280. Lee J, Lee K, Kim J. Fiber-based gas filter assembled via in situ synthesis of ZIF-8 metal organic frameworks for an optimal adsorption of SO2: experimental and theoretical approaches. ACS Appl Mater Interfaces 2021;13:1620-31.

281. Asaro F, Benedetti A, Freris I, Riello P, Savko N. Evolution of the nonionic inverse microemulsion-acid-TEOS system during the synthesis of nanosized silica via the sol-gel process. Langmuir 2010;26:12917-25.

282. Lorignon F, Gossard A, Carboni M. Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem Eng J 2020;393:124765.

283. Tian T, Zeng Z, Vulpe D, et al. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat Mater 2018;17:174-9.

284. Connolly BM, Aragones-Anglada M, Gandara-Loe J, et al. Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nat Commun 2019;10:2345.

285. Bueken B, Van Velthoven N, Willhammar T, et al. Gel-based morphological design of zirconium metal-organic frameworks. Chem Sci 2017;8:3939-48.

286. Hou J, Sapnik AF, Bennett TD. Metal-organic framework gels and monoliths. Chem Sci 2020;11:310-23.

287. Avrami M. Kinetics of phase change. I general theory. J Chem Phys 1939;7:1103-12.

288. Gualtieri AF. Synthesis of sodium zeolites from a natural halloysite. Phys Chem Miner 2001;28:719-28.

289. Chen X, Xu Y, Zhou C, et al. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. Sci Adv 2022;8:eabn9130.

290. Pang M, Cairns AJ, Liu Y, Belmabkhout Y, Zeng HC, Eddaoudi M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. J Am Chem Soc 2013;135:10234-7.

291. Pang M, Cairns AJ, Liu Y, Belmabkhout Y, Zeng HC, Eddaoudi M. Highly monodisperse M(III)-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies. J Am Chem Soc 2012;134:13176-9.

292. Zheng S, Sun Y, Xue H, Braunstein P, Huang W, Pang H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl Sci Rev 2022;9:nwab197.

293. di Gregorio MC, Elsousou M, Wen Q, et al. Molecular cannibalism: sacrificial materials as precursors for hollow and multidomain single crystals. Nat Commun 2021;12:957.

294. Li H, Qin Z, Yang X, Chen X, Li Y, Shen K. Growth pattern control and nanoarchitecture engineering of metal-organic framework single crystals by confined space synthesis. ACS Cent Sci 2022;8:718-28.

295. Wang Y, Wang Y, Zhang L, Liu C, Pang H. Core-shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorg Chem Front 2019;6:2514-20.

296. Chen L, Wang HF, Li C, Xu Q. Bimetallic metal-organic frameworks and their derivatives. Chem Sci 2020;11:5369-403.

297. Chuang C, Kung C. Metal-organic frameworks toward electrochemical sensors: challenges and opportunities. Electroanalysis 2020;32:1885-95.

298. Guo C, Ma X, Wang B. Metal-organic frameworks-based composites and their photothermal applications. Acta Chimica Sinica 2021;79:967.

299. Xu Y, Wang Y, Wan J, Ma Y. Reduced graphene oxide-supported metal organic framework as a synergistic catalyst for enhanced performance on persulfate induced degradation of trichlorophenol. Chemosphere 2020;240:124849.

300. Wu Y, Yuan D, He D, et al. Decorated traditional zeolites with subunits of metal-organic frameworks for CH4/N2 separation. Angew Chem Int Ed Engl 2019;58:10241-4.

301. Xiong Y, Chang X, Qiao X, et al. Co-MOF-74 derived Co3O4/graphene heterojunction nanoscrolls for ppb-level acetone detection. Sens Actuators B Chem 2019;300:127011.

302. Zhou T, Chen S, Wang X, Xie C, Zeng D. Catalytic activation of cobalt doping sites in ZIF-71-coated ZnO nanorod arrays for enhancing gas-sensing performance to acetone. ACS Appl Mater Interfaces 2020;12:48948-56.

303. Zhao Q, Ge Y, Fu K, Ji N, Song C, Liu Q. Oxidation of acetone over Co-based catalysts derived from hierarchical layer hydrotalcite: influence of Co/Al molar ratios and calcination temperatures. Chemosphere 2018;204:257-66.

304. Lan L, Shi Z, Zhang Q, et al. Defects lead to a massive enhancement in the UV-Vis-IR driven thermocatalytic activity of Co3O4 mesoporous nanorods. J Mater Chem A 2018;6:7194-205.

305. Zhang Y, Park S. Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl Catal B: Environ 2019;240:92-101.

306. Abdollahi N, Akbar Razavi SA, Morsali A, Hu ML. High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: cooperative effects of pore functionalization and surface-charge modulation. J Hazard Mater 2020;387:121667.

307. Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 2020;7:305-14.

308. Li QY, Zhang L, Xu YX, Li Q, Xue H, Pang H. Smart yolk/shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. ACS Sustain Chem Eng 2019;7:5027-33.

309. Xiao X, Zhang G, Xu Y, et al. A new strategy for the controllable growth of MOF@PBA architectures. J Mater Chem A 2019;7:17266-71.

310. Shan Y, Zhang M, Bai Y, Du M, Guo X, Pang H. Design and synthesis of transition metal oxide/zeolitic imidazolate framework-67 composites. Chem Eng J 2022;429:132146.

311. Radhakrishnan S, Mathiyarasu J. Chapter 8 - graphene-carbon nanotubes modified electrochemical sensors. In: editor^editors, editor. Graphene-based electrochemical sensors for biomolecules. Elsevier; 2019. p.187-205.

312. Venkadesh A, Mathiyarasu J, Radhakrishnan S. Voltammetric sensing of caffeine in food sample using Cu-MOF and graphene. Electroanalysis 2021;33:1007-13.

313. Khiarak BN, Hasanzadeh M, Mojaddami M, Shahriyar Far H, Simchi A. In situ synthesis of quasi-needle-like bimetallic organic frameworks on highly porous graphene scaffolds for efficient electrocatalytic water oxidation. Chem Commun 2020;56:3135-8.

314. Wang W, Xu X, Zhou W, Shao Z. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci 2017;4:1600371.

315. Huang H, Chen Y, Chen Z, Chen J, Hu Y, Zhu JJ. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. J Hazard Mater 2021;416:125895.

316. Quan X, Sun Z, Xu J, et al. Construction of an aminated MIL-53(Al)-functionalized carbon nanotube for the efficient removal of bisphenol AF and metribuzin. Inorg Chem 2020;59:2667-79.

317. Lin KY, Chang HA. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015;139:624-31.

318. Del Rio M, Turnes Palomino G, Palomino Cabello C. Metal-organic framework@carbon hybrid magnetic material as an efficient adsorbent for pollutant extraction. ACS Appl Mater Interfaces 2020;12:6419-25.

319. Qiu J, Yang L, Li M, Yao J. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis. Mater Res Bull 2019;112:297-306.

320. Sun D, Li Z. Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2-Uio-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J Phys Chem C 2016;120:19744-50.

321. Wang Y, Chen L, Hou CC, Wei YS, Xu Q. Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Org Biomol Chem 2020;18:8508-25.

322. Guan J, Duan Z, Zhang F, et al. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat Catal 2018;1:870-7.

323. Li X, Tung C, Wu L. Semiconducting quantum dots for artificial photosynthesis. Nat Rev Chem 2018;2:160-73.

324. Chung HT, Cullen DA, Higgins D, et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017;357:479-84.

325. Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 2018;30:1705112.

326. He T, Chen S, Ni B, et al. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew Chem Int Ed Engl 2018;57:3493-8.

327. Abdel-Mageed AM, Rungtaweevoranit B, Parlinska-Wojtan M, Pei X, Yaghi OM, Behm RJ. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J Am Chem Soc 2019;141:5201-10.

328. Zuo Q, Liu T, Chen C, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem Int Ed Engl 2019;58:10198-203.

329. Qiu J, Zhang X, Xie K, et al. Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance. J Colloid Interface Sci 2019;538:569-77.

330. Chen S, Liu X, Jin J, et al. Individually encapsulated frame-in-frame structure. ACS Materials Lett 2020;2:685-90.

331. Kalaj M, Bentz KC, Ayala S Jr, et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem Rev 2020;120:8267-302.

332. Iizuka T, Honjo K, Uemura T. Enhanced mechanical properties of a metal-organic framework by polymer insertion. Chem Commun 2019;55:691-4.

333. DeCoste JB, Denny MS Jr, Peterson GW, Mahle JJ, Cohen SM. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem Sci 2016;7:2711-6.

334. Kalaj M, Denny MS Jr, Bentz KC, Palomba JM, Cohen SM. Nylon-MOF composites through postsynthetic polymerization. Angew Chem Int Ed Engl 2019;58:2336-40.

335. Fu D, Liu X, Zheng X, et al. Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coord Chem Rev 2022;456:214393.

336. Tan C, Chen J, Wu X, Zhang H. Epitaxial growth of hybrid nanostructures. Nat Rev Mater 2018:3.

337. Liu C, Wang J, Wan J, Yu C. MOF-on-MOF hybrids: synthesis and applications. Coord Chem Rev 2021;432:213743.

338. Chai L, Pan J, Hu Y, Qian J, Hong M. Rational design and growth of MOF-on-MOF heterostructures. Small 2021;17:e2100607.

339. Deng X, Yang L, Huang H, et al. Shape-defined hollow structural Co-MOF-74 and metal nanoparticles@Co-MOF-74 composite through a transformation strategy for enhanced photocatalysis performance. Small 2019;15:e1902287.

340. Feng L, Lv XL, Yan TH, Zhou HC. Modular programming of hierarchy and diversity in multivariate polymer/metal-organic framework hybrid composites. J Am Chem Soc 2019;141:10342-9.

341. Zhu K, Fan R, Wu J, et al. MOF-on-MOF membrane with cascading functionality for capturing dichromate ions and p-arsanilic acid turn-on sensing. ACS Appl Mater Interfaces 2020;12:58239-51.

342. Choi S, Kim T, Ji H, Lee HJ, Oh M. Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J Am Chem Soc 2016;138:14434-40.

343. Pan Y, Sun K, Liu S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 2018;140:2610-8.

344. Zhan G, Zeng HC. Hydrogen spillover through Matryoshka-type (ZIFs@)(n-1)ZIFs nanocubes. Nat Commun 2018;9:3778.

345. Lee HJ, Cho YJ, Cho W, Oh M. Controlled isotropic or anisotropic nanoscale growth of coordination polymers: formation of hybrid coordination polymer particles. ACS Nano 2013;7:491-9.

346. Chernikova V, Shekhah O, Spanopoulos I, Trikalitis PN, Eddaoudi M. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films. Chem Commun 2017;53:6191-4.

347. Yang X, Yuan S, Zou L, et al. One-step synthesis of hybrid core-shell metal-organic frameworks. Angew Chem Int Ed Engl 2018;57:3927-32.

348. Kim D, Lee G, Oh S, Oh M. Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters. Chem Commun 2018;55:43-6.

349. Lee S, Oh S, Oh M. Atypical hybrid metal-organic frameworks (MOFs): a combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew Chem Int Ed Engl 2020;59:1327-33.

350. Zha Q, Yuan F, Qin G, Ni Y. Cobalt-based MOF-on-MOF two-dimensional heterojunction nanostructures for enhanced oxygen evolution reaction electrocatalytic activity. Inorg Chem 2020;59:1295-305.

351. Zhao M, Chen J, Chen B, et al. Selective epitaxial growth of oriented hierarchical metal-organic framework heterostructures. J Am Chem Soc 2020;142:8953-61.

352. Haldar R, Wöll C. Hierarchical assemblies of molecular frameworks - MOF-on-MOF epitaxial heterostructures. Nano Res 2021;14:355-68.

353. Abdollahzadeh M, Chai M, Hosseini E, et al. Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Adv Mater 2022;34:e2107878.

354. Lee G, Lee S, Oh S, Kim D, Oh M. Tip-to-middle anisotropic MOF-On-MOF growth with a structural adjustment. J Am Chem Soc 2020;142:3042-9.

355. Gu Z, Zhang W, Pan T, et al. Anisotropic MOF-on-MOF growth of isostructural multilayer metal-organic framework heterostructures. Research 2021;2021:9854946.

356. Van Vleet MJ, Weng T, Li X, Schmidt JR. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem Rev 2018;118:3681-721.

357. Pienack N, Bensch W. In-situ monitoring of the formation of crystalline solids. Angew Chem Int Ed Engl 2011;50:2014-34.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/