REFERENCES

1. He M, Sun Y, Han B. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew Chem Int Ed Engl 2022;61:e202112835.

2. Mehla S, Kandjani AE, Babarao R, et al. Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm. Energy Environ Sci 2021;14:320-52.

3. Wu Y, Jiang Z, Lu X, Liang Y, Wang H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019;575:639-42.

4. Yang HB, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy 2018;3:140-7.

5. Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014;508:504-7.

6. Li L, Li X, Sun Y, Xie Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev 2022;51:1234-52.

7. Zhang J, An B, Li Z, et al. Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J Am Chem Soc 2021;143:8829-37.

8. Koshy DM, Nathan SS, Asundi AS, et al. Bridging thermal catalysis and electrocatalysis: catalyzing CO2 conversion with carbon-based materials. Angew Chem Int Ed Engl 2021;60:17472-80.

9. Sun Q, Wang N, Yu J. Advances in catalytic applications of zeolite-supported metal catalysts. Adv Mater 2021;33:e2104442.

10. Rao H, Schmidt LC, Bonin J, Robert M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017;548:74-7.

11. Barman S, Singh A, Rahimi FA, Maji TK. Metal-free catalysis: a redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. J Am Chem Soc 2021;143:16284-92.

12. Zhao W, Zhai D, Liu C, et al. Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Appl Catal B-environ 2022;300:120719.

13. Ozden A, Wang Y, Li F, et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 2021;5:706-19.

14. Qiu XF, Zhu HL, Huang JR, Liao PQ, Chen XM. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J Am Chem Soc 2021;143:7242-6.

15. Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat Catal 2020;3:478-87.

16. Cheng Y, Hou P, Wang X, Kang P. CO2 electrolysis system under industrially relevant conditions. Acc Chem Res 2022;55:231-40.

17. Gao D, Wei P, Li H, Lin L, Wang G, Bao X. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys-Chim Sin 2021;37:2009021.

18. Li N, Si D, Wu Q, Wu Q, Huang Y, Cao R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic CO/Zn polyphthalocyanine frameworks. CCS Chem 2022.

19. Jia S, Ma X, Sun X, Han B. Electrochemical transformation of CO2 to value-added chemicals and fuels. CCS Chem 2022;4:3213-29.

20. Cheng Y, Hou P, Pan H, Shi H, Kang P. Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential. Appl Catal B-environ 2020;272:118954.

21. Yang D, Zhu Q, Han B. Electroreduction of CO2 in ionic liquid-based electrolytes. Innovation 2020;1:100016.

22. Schwarz HA, Dodson RW. Reduction potentials of CO2- and the alcohol radicals. J Phys Chem 1989;93:409-14.

23. Zhao K, Quan X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges. ACS Catal 2021;11:2076-97.

24. Cheng Y, Hou J, Kang P. Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles. ACS Energy Lett 2021;6:3352-8.

25. Chang C, Chen W, Chen Y, et al. Recent progress on two-dimensional materials. Acta Phys-Chim Sin 2021;37:2108017.

26. Fu Q, Liu H, Tang X, Wang R, Chen M, Liu Y. Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Lett 2022;7:1128-36.

27. Song D, Chen X, Lin Z, et al. Usability identification framework and high-throughput screening of two-dimensional materials in lithium ion batteries. ACS Nano 2021;15:16469-77.

28. Wang J, Malgras V, Sugahara Y, Yamauchi Y. Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat Commun 2021;12:3563.

29. Liang Q, Zhang Q, Zhao X, Liu M, Wee ATS. Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS Nano 2021;15:2165-81.

30. Shamzhy M, Gil B, Opanasenko M, Roth WJ, Čejka J. MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal 2021;11:2366-96.

31. Xu L, Ma T, Shen Y, et al. Rational manipulation of stacking arrangements in three-dimensional zeolites built from two-dimensional zeolitic nanosheets. Angew Chem Int Ed Engl 2020;59:19934-9.

32. Li G, Shen Y, Zhao S, et al. Construction of rGO-SnO2 heterojunction for enhanced hydrogen detection. Appl Surf Sci 2022;585:152623.

33. Li S, Thiering G, Udvarhelyi P, Ivády V, Gali A. Carbon defect qubit in two-dimensional WS2. Nat Commun 2022;13:1210.

34. Kovalska E, Antonatos N, Luxa J, Sofer Z. Edge-hydrogenated germanene by electrochemical decalcification-exfoliation of CaGe2: Germanene-enabled vapor sensor. ACS Nano 2021;15:16709-18.

35. Maiti R, Patil C, Saadi MASR, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat Photonics 2020;14:578-84.

36. Liu R, Wang F, Liu L, et al. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Structures 2021;2:2000136.

37. An C, Nie F, Zhang R, et al. Two-dimensional material-enhanced flexible and self-healable photodetector for large-area photodetection. Adv Funct Mater 2021;31:2100136.

38. Wang K, Chen J, Yan X. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 2021;79:105453.

39. Cao G, Gao C, Wang J, Lan J, Yan X. Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing. Nano Res 2022;15:8419-27.

40. Tang B, Veluri H, Li Y, et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat Commun 2022;13:3037.

41. Nguyen TN, Salehi M, Le QV, Seifitokaldani A, Dinh CT. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal 2020;10:10068-95.

42. Wang Y, Liu J, Wang Y, Al-Enizi AM, Zheng G. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 2017;13:1701809.

43. Shimoni R, Shi Z, Binyamin S, et al. Electrostatic secondary-sphere interactions that facilitate rapid and selective electrocatalytic CO2 reduction in a fe-porphyrin-based metal-organic framework. Angew Chem Int Ed Engl 2022;61:e202206085.

44. Zhou P, Shen Y, Zhao S, et al. Hydrothermal synthesis of novel ternary hierarchical MoS2/TiO2/clinoptilolite nanocomposites with remarkably enhanced visible light response towards xanthates. Appl Surf Sci 2021;542:148578.

45. Sun Z, Ma T, Tao H, Fan Q, Han B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017;3:560-87.

46. Fang W, Huang L, Zaman S, Wang Z, Han Y, Xia BY. Recent progress on two-dimensional electrocatalysis. Chem Res Chin Univ 2020;36:611-21.

47. Li Z, Zhai L, Ge Y, et al. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl Sci Rev 2022;9:nwab142.

48. Ma Y, Shi R, Zhang T. Research progress on triphase interface electrocatalytic carbon dioxide reduction. Acta Chimica Sinica 2021;79:369.

49. Pan F, Yang Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ Sci 2020;13:2275-309.

50. Gu H, Zhong L, Shi G, et al. Graphdiyne/Graphene heterostructure: a universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J Am Chem Soc 2021;143:8679-88.

51. Chen S, Kang Z, Hu X, et al. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv Mater 2017;29:1701687.

52. Wang P, Zhao D, Yin L. Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy Environ Sci 2021;14:1794-834.

53. Li X, Wang S, Li L, Zu X, Sun Y, Xie Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction. Acc Chem Res 2020;53:2964-74.

54. Rong X, Wang HJ, Lu XL, Si R, Lu TB. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew Chem Int Ed Engl 2020;59:1961-5.

55. Pan J, Sun Y, Deng P, et al. Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Appl Catal B-environ 2019;255:117736.

56. Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catal 2018;1:909-21.

57. Li Y, Chen J, Chen S, et al. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS Energy Lett 2022;7:1454-61.

58. Liu W, Qi J, Bai P, Zhang W, Xu L. Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide. Appl Catal B-environ 2020;272:118974.

59. Niu ZZ, Gao FY, Zhang XL, et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 Electroreduction to multicarbon products. J Am Chem Soc 2021;143:8011-21.

60. Lv K, Teng C, Shi M, et al. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv Funct Mater 2018;28:1802339.

61. Zeng L, You C, Hong N, Zhang X, Liang T. Large-scale preparation of 2D metal films by a top-down approach. Adv Eng Mater 2020;22:1901359.

62. Xu Y, Sprick RS, Brownbill NJ, et al. Bottom-up wet-chemical synthesis of a two-dimensional porous carbon material with high supercapacitance using a cascade coupling/cyclization route. J Mater Chem A 2021;9:3303-8.

63. Watts MC, Picco L, Russell-Pavier FS, et al. Production of phosphorene nanoribbons. Nature 2019;568:216-20.

64. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

65. Li H, Lu G, Wang Y, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013;9:1974-81.

66. Huang Y, Pan YH, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun 2020;11:2453.

67. Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011;331:568-71.

68. Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc Chem Res 2015;48:136-43.

69. Dakhchoune M, Villalobos LF, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat Mater 2021;20:362-9.

70. Obst M, Arnauts G, Cruz AJ, et al. Chemical vapor deposition of ionic liquids for the fabrication of ionogel films and patterns. Angew Chem Int Ed Engl 2021;60:25668-73.

71. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353:aac9439.

72. Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009;457:706-10.

73. Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009;324:1312-4.

74. Browne MP, Novotný F, Manzanares Palenzuela CL, Šturala J, Sofer Z, Pumera M. 2H and 2H/1T-transition metal dichalcogenide films prepared via powderless gas deposition for the hydrogen evolution reaction. ACS Sustainable Chem Eng 2019;7:16440-9.

75. Yin C, Gong C, Chu J, et al. Ultrabroadband photodetectors up to 10.6 µm based on 2D Fe3O4 nanosheets. Adv Mater 2020;32:e2002237.

76. Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature 2018;556:355-9.

77. Li W, Qiu X, Lv B, et al. Free-standing 2D ironene with magnetic vortex structure at room temperature. Matter 2022;5:291-301.

78. Xu T, Li S, Li A, et al. Structural evolution of atomically thin 1T’-MoTe2 alloyed in chalcogen atmosphere. Small Struct 2022;3:2200025.

79. Sun Z, Liao T, Dou Y, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun 2014;5:3813.

80. Peng Y, Tan Q, Huang H, et al. Customization of functional MOFs by a modular design strategy for target applications. Chem Synth 2022;2:15.

81. Wang L, Saji SE, Wu L, et al. Emerging synthesis strategies of 2D MOFs for electrical devices and integrated circuits. Small 2022;18:e2201642.

82. Pham HTB, Choi JY, Huang S, et al. Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J Am Chem Soc 2022;144:10615-21.

83. Zheng Y, Zheng S, Xu Y, Xue H, Liu C, Pang H. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem Eng J 2019;373:1319-28.

84. Sun X, Lu L, Zhu Q, et al. MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction. Angew Chem Int Ed Engl 2018;57:2427-31.

85. Sun X, Zhu Q, Kang X, et al. Molybdenum-bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol. Angew Chem Int Ed Engl 2016;55:6771-5.

86. Lu L, Guo W, Chen C, et al. Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction. Green Chem 2020;22:6804-8.

87. Rabiee H, Ge L, Zhang X, et al. Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Appl Catal B-environ 2021;286:119945.

88. Abdelazim NM, Noori YJ, Thomas S, et al. Lateral growth of MoS2 2D material semiconductors over an insulator via electrodeposition. Adv Electron Mater 2021;7:2100419.

89. Feng C, Wang F, Liu Z, et al. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nat Commun 2021;12:5980.

90. Shen L, Zhang Q, Luo J, et al. Heteroatoms adjusting amorphous FeMn-based nanosheets via a facile electrodeposition method for full water splitting. ACS Sustainable Chem Eng 2021;9:5963-71.

91. Tan SF, Reidy K, Lee S, et al. Multilayer graphene - a promising electrode material in liquid cell electrochemistry. Adv Funct Materials 2021;31:2104628.

92. Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341:1502-5.

93. Lukatskaya MR, Halim J, Dyatkin B, et al. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew Chem Int Ed Engl 2014;53:4877-80.

94. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014;516:78-81.

95. Liu L, Yang X, Xie Y, et al. A universal lab-on-salt-particle approach to 2D single-layer ordered mesoporous materials. Adv Mater 2020;32:e1906653.

96. Zhang F, Zhang J, Zhang B, et al. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat Commun 2020;11:1431.

97. Ko KY, Song JG, Kim Y, et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016;10:9287-96.

98. Lee C, Zhao Y, Wang C, Mitchell DRG, Wallace GG. Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO2 electroreduction to CO. Sustain Energy Fuels 2017;1:1023-7.

99. Zhang T, Li X, Qiu Y, et al. Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. J Catal 2018;357:154-62.

100. Lei F, Liu W, Sun Y, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 2016;7:12697.

101. Zhang B, Zhang J, Hua M, et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J Am Chem Soc 2020;142:13606-13.

102. Han N, Wang Y, Deng J, et al. Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J Mater Chem A 2019;7:1267-72.

103. Liu W, Zhai P, Li A, et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat Commun 2022;13:1877.

104. Liu K, Wang J, Shi M, Yan J, Jiang Q. Simultaneous achieving of high faradaic efficiency and CO Partial current density for CO2 reduction via robust, noble-metal-free Zn nanosheets with favorable adsorption energy. Adv Energy Mater 2019;9:1900276.

105. Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016;529:68-71.

106. Gao S, Jiao X, Sun Z, et al. Ultrathin CO3O4 layers realizing optimized CO2 electroreduction to formate. Angew Chem Int Ed Engl 2016;55:698-702.

107. Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun 2018;9:1320.

108. Geng Z, Kong X, Chen W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed Engl 2018;57:6054-9.

109. Chu M, Chen C, Guo W, et al. Enhancing electroreduction of CO2 over Bi2 WO6 nanosheets by oxygen vacancies. Green Chem 2019;21:2589-93.

110. Wang H, Chen Y, Hou X, Ma C, Tan T. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem 2016;18:3250-6.

111. Zheng X, De Luna P, García de Arquer FP, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017;1:794-805.

112. Zhang A, Liang Y, Li H, et al. In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate. Nano Lett 2020;20:8229-35.

113. Li F, Li YC, Wang Z, et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat Catal 2020;3:75-82.

114. Yu Y, Lee SJ, Theerthagiri J, et al. Reconciling of experimental and theoretical insights on the electroactive behavior of C/Ni nanoparticles with AuPt alloys for hydrogen evolution efficiency and non-enzymatic sensor. Chem Eng J 2022;435:134790.

115. Yu Y, Lee SJ, Theerthagiri J, Lee Y, Choi MY. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl Catal B-environ 2022;316:121603.

116. Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 2014;5:3242.

117. Mistry H, Reske R, Zeng Z, et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 2014;136:16473-6.

118. Zhao Y, Tan X, Yang W, et al. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew Chem Int Ed Engl 2020;59:21493-8.

119. Wang Z, Li C, Yamauchi Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 2016;11:373-91.

120. Xiao J, Gao MR, Liu S, Luo JL. Hexagonal Zn nanoplates enclosed by Zn(100) and Zn(002) facets for highly selective CO2 electroreduction to CO. ACS Appl Mater Interfaces 2020;12:31431-8.

121. Han J, An P, Liu S, et al. Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew Chem Int Ed Engl 2019;58:12711-6.

122. Yin J, Yin Z, Jin J, et al. A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal. J Am Chem Soc 2021;143:15335-43.

123. Yang J, Wang X, Qu Y, et al. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv Energy Mater 2020;10:2001709.

124. Yang H, Han N, Deng J, et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv Energy Mater 2018;8:1801536.

125. Wu J, Sharma PP, Harris BH, Zhou X. Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode. J Power Sources 2014;258:189-94.

126. Wu D, Wang X, Fu X, Luo J. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl Catal B-environ 2021;284:119723.

127. Shifa TA, Vomiero A. Confined catalysis: progress and prospects in energy conversion. Adv Energy Mater 2019;9:1902307.

128. Xiao C, Zhang J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 2021;15:7975-8000.

129. Zhang Z, Bian L, Tian H, et al. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small 2022;18:e2107450.

130. Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans 1 1989;85:2309.

131. Chen C, Sun X, Yan X, et al. A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products. Green Chem 2020;22:1572-6.

132. Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979;277:637-8.

133. Han Z, Han D, Chen Z, et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat Commun 2022;13:3158.

134. Sang J, Wei P, Liu T, et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew Chem Int Ed Engl 2022;61:e202114238.

135. Xiang Q, Li F, Wang J, et al. Heterostructure of ZnO nanosheets/Zn with a highly enhanced edge surface for efficient CO2 electrochemical reduction to CO. ACS Appl Mater Interfaces 2021;13:10837-44.

136. Sikam P, Takahashi K, Roongcharoen T, et al. Effect of 3d-transition metals doped in ZnO monolayers on the CO2 electrochemical reduction to valuable products: first principles study. Appl Surf Sci 2021;550:149380.

137. Luo W, Zhang Q, Zhang J, Moioli E, Zhao K, Züttel A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl Catal B-environ 2020;273:119060.

138. Gao S, Sun Z, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun 2017;8:14503.

139. Cheng D, Zhao ZJ, Zhang G, et al. The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat Commun 2021;12:395.

140. Yuan X, Chen S, Cheng D, et al. Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew Chem Int Ed Engl 2021;60:15344-7.

141. Li P, Bi J, Liu J, et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat Commun 2022;13:1965.

142. Duan J, Liu T, Zhao Y, et al. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat Commun 2022;13:2039.

143. Zhao M, Gu Y, Chen P, et al. Highly selective electrochemical CO2 reduction to CO using a redox-active couple on low-crystallinity mesoporous ZnGa2O4 catalyst. J Mater Chem A 2019;7:9316-23.

144. Asadi M, Kumar B, Behranginia A, et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun 2014;5:4470.

145. Abbasi P, Asadi M, Liu C, et al. Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide. ACS Nano 2017;11:453-60.

146. Mao X, Wang L, Xu Y, Li Y. Modulating the MoS2 edge structures by doping transition metals for electrocatalytic CO2 reduction. J Phys Chem C 2020;124:10523-9.

147. Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016;353:467-70.

148. Zhang A, Liang Y, Li H, et al. Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction. Nano Lett 2021;21:7789-95.

149. Ma X, Du J, Sun H, et al. Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Appl Catal B-environ 2021;298:120543.

150. Tuci G, Rossin A, Zhang X, Pham-huu C, Giambastiani G. Exohedrally functionalized carbon-based networks as catalysts for electrochemical syntheses. Curr Opin Green Sustain Chem 2022;33:100579.

151. Zhang X, Xue D, Jiang S, et al. Rational confinement engineering of MOF-derived carbon-based electrocatalysts toward CO2 reduction and O2 reduction reactions. InfoMat 2022:4.

152. Hasani A, Teklagne MA, Do HH, et al. Graphene-based catalysts for electrochemical carbon dioxide reduction. Carbon Energy 2020;2:158-75.

153. Tao H, Gao Y, Talreja N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A 2017;5:7257-84.

154. Wang ZL, Choi J, Xu M, et al. Optimizing electron densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction. ChemSusChem 2020;13:929-37.

155. Lee SJ, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sust Energ Rev 2021;143:110849.

156. Song Y, Chen W, Zhao C, Li S, Wei W, Sun Y. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew Chem Int Ed Engl 2017;56:10840-4.

157. Hao X, An X, Patil AM, et al. Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries. ACS Appl Mater Interfaces 2021;13:3738-47.

158. Genovese C, Schuster ME, Gibson EK, et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat Commun 2018;9:935.

159. Lu Q, Chen C, Di Q, et al. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range. ACS Catal 2022;12:1364-74.

160. Guo W, Tan X, Bi J, et al. Atomic indium catalysts for switching CO2 electroreduction products from formate to CO. J Am Chem Soc 2021;143:6877-85.

161. Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew Chem Int Ed Engl 2022;61:e202203569.

162. Kang X, Li L, Sheveleva A, et al. Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode. Nat Commun 2020;11:5464.

163. Li N, Chen X, Ong WJ, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 2017;11:10825-33.

164. Qu D, Peng X, Mi Y, et al. Nitrogen doping and titanium vacancies synergistically promote CO2 fixation in seawater. Nanoscale 2020;12:17191-5.

165. Han Z, Kortlever R, Chen HY, Peters JC, Agapie T. CO2 reduction selective for C(≥ 2) products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent Sci 2017;3:853-9.

166. Costentin C, Savéant JM. Molecular approach to catalysis of electrochemical reaction in porous films. Curr Opin Electrochem 2019;15:58-65.

167. Stuardi FM, Tiozzo A, Rotundo L, Leclaire J, Gobetto R, Nervi C. Efficient electrochemical reduction of CO2 to formate in methanol solutions by Mn-functionalized electrodes in the presence of amines. Chem Eur J 2022;28:e202104377.

168. McCarthy BD, Beiler AM, Johnson BA, Liseev T, Castner AT, Ott S. Analysis of electrocatalytic metal-organic frameworks. Coord Chem Rev 2020;406:213137.

169. Sun C, Gobetto R, Nervi C. Recent advances in catalytic CO2 reduction by organometal complexes anchored on modified electrodes. New J Chem 2016;40:5656-61.

170. Fang Y, Flake JC. Electrochemical reduction of CO2 at functionalized Au electrodes. J Am Chem Soc 2017;139:3399-405.

171. Filippi J, Rotundo L, Gobetto R, et al. Turning manganese into gold: efficient electrochemical CO2 reduction by a fac-Mn(apbpy)(Co)3Br complex in a gas-liquid interface flow cell. Chem Eng J 2021;416:129050.

172. Dubed Bandomo GC, Mondal SS, Franco F, et al. Mechanically constrained catalytic Mn(CO)3 Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O. ACS Catal 2021;11:7210-22.

173. Zhu HJ, Lu M, Wang YR, et al. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat Commun 2020;11:497.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/